Sharing HOL4 and HOL Light Proof Knowledge
- 6 Citations
- 601 Downloads
Abstract
New proof assistant developments often involve concepts similar to already formalized ones. When proving their properties, a human can often take inspiration from the existing formalized proofs available in other provers or libraries. In this paper we propose and evaluate a number of methods, which strengthen proof automation by learning from proof libraries of different provers. Certain conjectures can be proved directly from the dependencies induced by similar proofs in the other library. Even if exact correspondences are not found, learning-reasoning systems can make use of the association between proved theorems and their characteristics to predict the relevant premises. Such external help can be further combined with internal advice. We evaluate the proposed knowledge-sharing methods by reproving the HOL Light and HOL4 standard libraries. The learning-reasoning system HOL(y)Hammer, whose single best strategy could automatically find proofs for 30 % of the HOL Light problems, can prove 40 % with the knowledge from HOL4.
Keywords
Proof Assistant Standard Library Type Constructor Concept Match Interactive Theorem ProverNotes
Acknowledgments
This work has been supported by the Austrian Science Fund (FWF): P26201.
References
- 1.Adams, M.: The common HOL platform. In: Kaliszyk, C., Paskevich, A., (eds.) Fourth International Workshop on Proof Exchange for Theorem Proving, PxTP 2015, Berlin, Germany, 2–3 August 2015. to appear in EPTCS (2015)Google Scholar
- 2.Asperti, A., Ricciotti, W., Coen, C.S.: Matita tutorial. J. Formaliz. Reason. 7(2), 91–199 (2014)MathSciNetGoogle Scholar
- 3.Autexier, S., Hutter, D.: Structure formation in large theories. In: Kerber, M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.) CICM 2015. LNCS, vol. 9150, pp. 155–170. Springer, Heidelberg (2015) CrossRefGoogle Scholar
- 4.Blanchette, J.C., Haslbeck, M., Matichuk, D., Nipkow, T.: Mining the archive of formal proofs. In: Kerber, M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.) CICM 2015. LNCS, vol. 9150, pp. 3–17. Springer, Heidelberg (2015) CrossRefGoogle Scholar
- 5.Bortin, M., Johnsen, E.B., Lüth, C.: Structured formal development in Isabelle. Nordic J. Comput. 13, 1–20 (2006)MathSciNetGoogle Scholar
- 6.Gauthier, T., Kaliszyk, C.: Matching concepts across HOL libraries. In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS, vol. 8543, pp. 267–281. Springer, Heidelberg (2014) Google Scholar
- 7.Gauthier, T., Kaliszyk, C.: Premise selection and external provers for HOL4. In: Leroy, X., Tiu, A., (eds.) Proceedings of the 4th ACM-SIGPLAN Conference on Certified Programs and Proofs, pp. 49–57 (2015)Google Scholar
- 8.Harrison, J.: Optimizing proof search in model elimination. In: McRobbie, M.A., Slaney, J.K. (eds.) CADE 1996. LNCS, vol. 1104. Springer, Heidelberg (1996) Google Scholar
- 9.Harrison, J.: HOL Light: an overview. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 60–66. Springer, Heidelberg (2009) CrossRefGoogle Scholar
- 10.Huet, G., Herbelin, H.: 30 years of research and development around Coq. In: Jagannathan, S., Sewell, P., (eds.) The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2014, San Diego, CA, USA, 20–21 January 2014, pp. 249–250. ACM (2014)Google Scholar
- 11.Hurd, J.: First-order proof tactics in higher-order logic theorem provers. In: Archer, M., Di Vito, B., Muñoz, C., (eds.) Design and Application of Strategies/Tactics in Higher Order Logics (STRATA 2003), number NASA/CP-2003-212448 in NASA Technical reports, pp. 56–68, September 2003Google Scholar
- 12.Hurd, J.: The OpenTheory standard theory library. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 177–191. Springer, Heidelberg (2011) CrossRefGoogle Scholar
- 13.Kaliszyk, C., Krauss, A.: Scalable LCF-Style proof translation. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 51–66. Springer, Heidelberg (2013) CrossRefGoogle Scholar
- 14.Kaliszyk, C., Rabe, F.: Towards knowledge management for HOL Light. In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS, vol. 8543, pp. 357–372. Springer, Heidelberg (2014) Google Scholar
- 15.Kaliszyk, C., Urban, J.: Learning-assisted automated reasoning with Flyspeck. J. Autom. Reason. 53(2), 173–213 (2014)MathSciNetCrossRefGoogle Scholar
- 16.Kaliszyk, C., Urban, J.: HOL(y)Hammer: online ATP service for HOL Light. Math. Comput. Sci. 9(1), 5–22 (2015)zbMATHMathSciNetCrossRefGoogle Scholar
- 17.Kaliszyk, C., Urban, J., Vyskočil, J.: Efficient semantic features for automated reasoning over large theories. In: Proceedings of the 24th International Joint Conference on Artificial Intelligence, IJCAI 2015 (2015). (to appear)Google Scholar
- 18.Keller, C., Werner, B.: Importing HOL Light into Coq. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 307–322. Springer, Heidelberg (2010) CrossRefGoogle Scholar
- 19.The Mizar Mathematical Library. http://mizar.org/
- 20.Obua, S., Skalberg, S.: Importing HOL into isabelle/HOL. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 298–302. Springer, Heidelberg (2006) CrossRefGoogle Scholar
- 21.Paulson, L.C., Blanchette, J.C.: Three years of experience with Sledgehammer, a practical link between automated and interactive theorem provers. In: 8th IWIL (2010). Invited talkGoogle Scholar
- 22.Rabe, F.: The MMT API: a generic MKM system. In: Carette, J., Aspinall, D., Lange, C., Sojka, P., Windsteiger, W. (eds.) CICM 2013. LNCS, vol. 7961, pp. 339–343. Springer, Heidelberg (2013) CrossRefGoogle Scholar
- 23.Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 28–32. Springer, Heidelberg (2008) CrossRefGoogle Scholar