Logic for Programming, Artificial Intelligence, and Reasoning

Logic for Programming, Artificial Intelligence, and Reasoning pp 329-339 | Cite as

There Is No Best \(\beta \)-Normalization Strategy for Higher-Order Reasoners

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9450)

Abstract

The choice of data structures for the internal representation of terms in logical frameworks and higher-order theorem provers is a crucial low-level factor for their performance. We propose a representation of terms based on a polymorphically typed nameless spine data structure in conjunction with perfect term sharing and explicit substitutions.

In related systems the choice of a \(\beta \)-normalization method is usually statically fixed and cannot be adjusted to the input problem at runtime. The predominant strategies are hereby implementation specific adaptions of leftmost-outermost normalization. We introduce several different \(\beta \)-normalization strategies and empirically evaluate their performance by reduction step measurement on about 7000 heterogeneous problems from different (TPTP) domains.

Our study shows that there is no generally best \(\beta \)-normalization strategy and that for different problem domains, different best strategies can be identified. The evaluation results suggest a problem-dependent choice of a preferred \(\beta \)-normalization strategy for higher-order reasoning systems.

References

  1. 1.
    Abadi, M., Cardelli, L., Curien, P.L., Levy, J.J.: Explicit substitutions. In: Proceedings of the 17th Symposium on Principles of Programming Languages, POPL 1990, pp. 31–46. ACM, New York, NY, USA (1990)Google Scholar
  2. 2.
    Benzmüller, C., Raths, T.: HOL based first-order modal logic provers. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR-19 2013. LNCS, vol. 8312, pp. 127–136. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  3. 3.
    Bruijn, N.G.D.: Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the church-rosser theorem. INDAG. MATH 34, 381–392 (1972)CrossRefGoogle Scholar
  4. 4.
    Cervesato, I., Pfenning, F.: A linear spine calculus. J. Logic Comput. 13(5), 639–688 (2003)MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Church, A.: A set of postulates for the foundation of logic. Ann. Math. 33(2), 346–366 (1932)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Church, A.: A set of postulates for the foundation of logic. Second Paper. Ann. Math. 34(4), 839–864 (1933)MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Church, A.: A formulation of the simple theory of types. J. Symb. Log. 5(2), 56–68 (1940)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Gacek, A.: The abella interactive theorem prover (system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 154–161. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  9. 9.
    Girard, J.: Interprétation fonctionnelle et élimination des coupures de l’arithmétique d’ordre supérieur. Ph.D. thesis, Université Paris VII (1972)Google Scholar
  10. 10.
    Liang, C., Nadathur, G., Qi, X.: Choices in representation and reduction strategies for lambda terms in intensional contexts. J. Autom. Reasoning 33(2), 89–132 (2004)MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Nadathur, G.: A fine-grained notation for lambda terms and its use in intensional operations. J. Funct. Logic Program. 1999(2), 1–62 (1999)Google Scholar
  12. 12.
    Nadathur, G., Mitchell, D.J.: System description: teyjus - a compiler and abstract machine based implementation of \(\lambda \)prolog. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 287–291. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  13. 13.
    Pfenning, F., Schürmann, C.: System description: Twelf - a meta-logical framework for deductive systems. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 202–206. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  14. 14.
    Pientka, B., Dunfield, J.: Beluga: a framework for programming and reasoning with deductive systems (system description). In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 15–21. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  15. 15.
    Raths, T., Otten, J.: The QMLTP problem library for first-order modal logics. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 454–461. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  16. 16.
    Reynolds, J.C.: Towards a theory of type structure. In: Robinet, B. (ed.) Symposium on Programming. LNCS, vol. 19, pp. 408–423. Springer, Heidelberg (1974)CrossRefGoogle Scholar
  17. 17.
    Reynolds, J.C.: An introduction to polymorphic lambda calculus. In: Logical Foundations of Functional Programming, pp. 77–86. Addison-Wesley (1994)Google Scholar
  18. 18.
    Steen, A.: Efficient Data Structures for Automated Theorem Proving in Expressive Higher-Order Logics. Master’s thesis, Freie Universität Berlin, Berlin (2014)Google Scholar
  19. 19.
    Sutcliffe, G.: The TPTP problem library and associated infrastructure: The FOF and CNF parts, v3.5.0. J. Autom. Reasoning 43(4), 337–362 (2009)MATHCrossRefGoogle Scholar
  20. 20.
    Sutcliffe, G., Benzmüller, C.: Automated reasoning in higher-order logic using the TPTP THF infrastructure. J. Formalized Reasoning 3(1), 1–27 (2010)MATHGoogle Scholar
  21. 21.
    Wisniewski, M., Steen, A., Benzmüller, C.: LeoPARD — A generic platform for the implementation of higher-order reasoners. In: Kerber, M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.) CICM 2015. LNCS, vol. 9150, pp. 325–330. Springer, Heidelberg (2015) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institute of Computer ScienceFreie Universität BerlinBerlinGermany

Personalised recommendations