On the Expressive Power of Communication Primitives in Parameterised Systems

  • Benjamin Aminof
  • Sasha Rubin
  • Florian Zuleger
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9450)


We study foundational problems regarding the expressive power of parameterised systems. These (infinite-state) systems are composed of arbitrarily many finite-state processes that synchronise using a given communication primitive, i.e., broadcast, asynchronous rendezvous, broadcast with message loss, pairwise rendezvous, or disjunctive guards. With each communication primitive we associate the class of parameterised systems that use it. We study the relative expressive power of these classes (can systems in one class be simulated by systems in another?) and provide a complete picture with only a single question left open. Motivated by the question of separating these classes, we also study the absolute expressive power (e.g., is the set of traces of every parameterised system of a given class \(\omega \)-regular?). Our work gives insight into the verification and synthesis of parameterised systems, including new decidability and undecidability results for model checking parameterised systems using broadcast with message loss and asynchronous rendezvous.


Model Check Local Process Expressive Power Regular Language Global Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abdulla, P.A., Delzanno, G., Begin, L.V.: A classification of the expressive power of well-structured transition systems. Inf. Comput. 209(3), 248–279 (2011)zbMATHCrossRefGoogle Scholar
  2. 2.
    Aminof, B., Kotek, T., Rubin, S., Spegni, F., Veith, H.: Parameterized model checking of rendezvous systems. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 109–124. Springer, Heidelberg (2014) Google Scholar
  3. 3.
    Aminof, B., Rubin, S., Zuleger, F., Spegni, F.: Liveness of parameterized timed networks. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 375–387. Springer, Heidelberg (2015) CrossRefGoogle Scholar
  4. 4.
    Aspnes, J., Ruppert, E.: An introduction to population protocols. In: Garbinato, B., Miranda, H., Rodrigues, L. (eds.) Middleware for Network Eccentric and Mobile Applications, pp. 97–120. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Delzanno, G., Raskin, J.-F., Van Begin, L.: Towards the automated verification of multithreaded java programs. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 173–187. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  6. 6.
    Delzanno, G., Sangnier, A., Traverso, R., Zavattaro, G.: The cost of parameterized reachability in mobile ad hoc networks. CoRR abs/1202.5850 (2012)Google Scholar
  7. 7.
    Delzanno, G., Sangnier, A., Zavattaro, G.: Parameterized verification of ad hoc networks. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 313–327. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  8. 8.
    Delzanno, G., Sangnier, A., Zavattaro, G.: Verification of ad hoc networks with node and communication failures. In: Giese, H., Rosu, G. (eds.) FORTE 2012 and FMOODS 2012. LNCS, vol. 7273, pp. 235–250. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  9. 9.
    Emerson, E., Kahlon, V.: Model checking guarded protocols. In: LICS, pp. 361–370. IEEE (2003)Google Scholar
  10. 10.
    Emerson, E., Kahlon, V.: Reducing model checking of the many to the few. In: McAllester, D. (ed.) CADE 2000. LNCS, vol. 1831, pp. 236–254. Springer, Heidelberg (2000) CrossRefGoogle Scholar
  11. 11.
    Esparza, J.: Keeping a crowd safe: on the complexity of parameterized verification. In: STACS (2014)Google Scholar
  12. 12.
    Esparza, J., Finkel, A., Mayr, R.: On the verification of broadcast protocols. In: LICS, p. 352. IEEE (1999)Google Scholar
  13. 13.
    Esparza, J., Ganty, P., Majumdar, R.: Parameterized verification of asynchronous shared-memory systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 124–140. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  14. 14.
    Finkel, A., Geeraerts, G., Raskin, J., Begin, L.V.: On the omega-language expressive power of extended petri nets. Theor. Comput. Sci. 356(3), 374–386 (2006)zbMATHCrossRefGoogle Scholar
  15. 15.
    Fisher, J., Henzinger, T.A.: Executable cell biology. Nat. Biotechnol. 25(11), 1239–1249 (2007)CrossRefGoogle Scholar
  16. 16.
    Geeraerts, G., Raskin, J., Begin, L.V.: Well-structured languages. Acta Inf. 44(3–4), 249–288 (2007)zbMATHCrossRefGoogle Scholar
  17. 17.
    German, S.M., Sistla, A.P.: Reasoning about systems with many processes. J. ACM 39(3), 675–735 (1992)zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Lynch, N.: Distributed Algorithms. Morgan Kaufman, San Francisco (1996) zbMATHGoogle Scholar
  19. 19.
    Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall, Upper Saddle River (1967) zbMATHGoogle Scholar
  20. 20.
    Prasad, K.V.S.: A calculus of broadcasting systems. Sci. Comput. Program. 25(2–3), 285–327 (1995)CrossRefGoogle Scholar
  21. 21.
    Schmitz, S., Schnoebelen, P.: The power of well-structured systems. In: D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013. LNCS, vol. 8052, pp. 5–24. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  22. 22.
    Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Banff Higher Order Workshop, pp. 238–266 (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Technische Universität WienViennaAustria
  2. 2.Università Degli Studi di Napoli “Federico II”NaplesItaly

Personalised recommendations