Advertisement

Skolemization for Substructural Logics

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9450)

Abstract

The usual Skolemization procedure, which removes strong quantifiers by introducing new function symbols, is in general unsound for first-order substructural logics defined based on classes of complete residuated lattices. However, it is shown here (following similar ideas of Baaz and Iemhoff for first-order intermediate logics in [1]) that first-order substructural logics with a semantics satisfying certain witnessing conditions admit a “parallel” Skolemization procedure where a strong quantifier is removed by introducing a finite disjunction or conjunction (as appropriate) of formulas with multiple new function symbols. These logics typically lack equivalent prenex forms. Also, semantic consequence does not in general reduce to satisfiability. The Skolemization theorems presented here therefore take various forms, applying to the left or right of the consequence relation, and to all formulas or only prenex formulas.

Keywords

Function Symbol Residuated Lattice Intuitionistic Logic Predicate Symbol Sequent Calculus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Baaz, M., Lemhoff, R.: Skolemization in intermediate logics with the finite model property. SubmittedGoogle Scholar
  2. 2.
    Baaz, M., Iemhoff, R.: On Skolemization in constructive theories. J. Symbolic Logic 73(3), 969–998 (2008)MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Buss, S. (ed.): Handbook of Proof Theory. Kluwer, Dordrecht (1998)MATHGoogle Scholar
  4. 4.
    Ciabattoni, A., Galatos, N., Terui, K.: Algebraic proof theory for substructural logics: Cut-elimination and completions. Ann. Pure. Appl. Logic 163(3), 266–290 (2012)MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Cintula, P., Hájek, P., Noguera, C. (eds).: Handbook of Mathematical Fuzzy Logic (in 2 volumes), volume 37, 38 of Studies in Logic, Mathematical Logic and Foundations. College Publications, London (2011)Google Scholar
  6. 6.
    Cintula, P., Metcalfe, G.: Herbrand theorems for substructural logics. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR-19 2013. LNCS, vol. 8312, pp. 584–600. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  7. 7.
    Cintula, P., Noguera, C.: A general framework for mathematical fuzzy logic. In: Cintula, P., Hájek, P., Noguera, C. (eds.) Handbook of Mathematical Fuzzy Logic. vol. 1, vol. 37 of Studies in Logic, Mathematical Logic and Foundations, pp. 103–207. College Publications, London (2011)Google Scholar
  8. 8.
    Dershowitz, N., Manna, Z.: Proving termination with multiset orderings. Commun. ACM 22(8), 465–476 (1979)MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic Glimpse at Substructural Logics. Studies in Logic and the Foundations of Mathematics, vol. 151. Elsevier, Amsterdam (2007)Google Scholar
  10. 10.
    García-Cerdaña, À., Armengol, E., Esteva, F.: Fuzzy description logics and t-norm based fuzzy logics. Int. J. Approximate Reasoning 51(6), 632–655 (2010)MATHCrossRefGoogle Scholar
  11. 11.
    Hájek, P.: Metamathematics of Fuzzy Logic. Trends in Logic. Kluwer, Dordrecht (1998) MATHCrossRefGoogle Scholar
  12. 12.
    Hájek, P.: Making fuzzy description logic more general. Fuzzy Sets Syst. 154(1), 1–15 (2005)MATHCrossRefGoogle Scholar
  13. 13.
    Meghini, C., Sebastiani, F., Straccia, U.: A model of multimedia information retrieval. J. ACM 48(5), 909–970 (2001)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Metcalfe, G., Olivetti, N., Gabbay, D.M.: Proof Theory for Fuzzy Logics. vol. 36 of Applied Logic Series. Springer, Heidelberg (2008)Google Scholar
  15. 15.
    Minc, G.E.: The Skolem method in intuitionistic calculi. Proc. Steklov Inst. Math. 121, 73–109 (1974)MATHMathSciNetGoogle Scholar
  16. 16.
    Ono, H.: Crawley completions of residuated lattices and algebraic completeness of substructural predicate logics. Stud. Logica 100(1–2), 339–359 (2012)MATHCrossRefGoogle Scholar
  17. 17.
    Restall, G.: An Introduction to Substructural Logics. Routledge, New York (2000)CrossRefGoogle Scholar
  18. 18.
    Vojtáš, P.: Fuzzy logic programming. Fuzzy Sets Syst. 124(3), 361–370 (2001)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Petr Cintula
    • 1
  • Denisa Diaconescu
    • 2
    • 3
  • George Metcalfe
    • 2
  1. 1.Institute of Computer ScienceCzech Academy of SciencesPragueCzech Republic
  2. 2.Mathematical InstituteUniversity of BernBernSwitzerland
  3. 3.Faculty of Mathematics and Computer ScienceUniversity of BucharestBucharestRomania

Personalised recommendations