Advertisement

Implementation and Comparison of Cluster-Based PSO Extensions in Hybrid Settings with Efficient Approximation

  • André MueßEmail author
  • Jens Weber
  • Raphael-Elias Reisch
  • Benjamin Jurke
Conference paper
Part of the Technologien für die intelligente Automation book series (TIA)

Abstract

This contribution presents a comparison between two extensions of the particle swarm optimization algorithm in a hybrid setting where the evaluation of the objective function requires a high computational effort. A first approach using simulation-based optimization via particle swarm optimization was developed in order to reach an improved setup optimization support of the workpiece position and orientation in a CNC tooling machine. For that, a 1:1 interface between the machine simulation model and the simulation-based optimization approach produced a high number of simulation runs. The idea arose that the extension of the PSO algorithm as well as the usage of an NC interpreter operating as a pre-processing component could support the setup process of the tooling machines. The extension of the PSO algorithm deals with the segmentation of the parameter search space taking collisions and lower computational effort into consideration. A significant reduction of simulation runs has been achieved.

Keywords

NC interpreter K-means binary search workpiece tooling machine clustering PSO extension 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Alt H: Computational Discrete Mathematics: Advanced Lectures. In: Goos, G., Hartmanis, J., Leeuwen, J. (eds.) LNCE, vol. 2122. Springer, Berlin, Heidelberg, New York (2001)Google Scholar
  2. 2.
    Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: Proceedings of the 4th International Conference of Neural Networks, vol. 4, pp. 1942 – 1948. IEEE Press (1995).Google Scholar
  3. 3.
    Kennedy, J., R. C. Eberhart and Y. Shi. Swarm Intelligence. pp. 287–326. Morgan Kaufmann Publishers, San Francisco. (2001)CrossRefGoogle Scholar
  4. 4.
    März, L., Krug W.: Kopplung von Simulation und Optimierung. In März, L., Krug, W., Rose, O., Weigert, G. (Hrsg.). Simulation und Optimierung in Produktion und Logistik, Praxisorientierter Leitfaden mit Fallbeispielen. pp 41 – 45. Heidelberg, Dordrecht, London, New York: Springer (2011).CrossRefGoogle Scholar
  5. 5.
    März, L., Krug W.: Simulationsgestützte Optimierung. In März, L., Krug, W., Rose, O., Weigert, G. (Hrsg.). Simulation und Optimierung in Produktion und Logistik, Praxisorientierter Leitfaden mit Fallbeispielen. pp 3 – 12. Heidelberg, Dordrecht, London, New York: Springer (2011).CrossRefGoogle Scholar
  6. 6.
    Montgomery, D. C.: Design of Experiments. 8th ed. John Wiley and Sons, Inc. (2013).Google Scholar
  7. 7.
    Reisch, R.-E., Weber, J., Laroque, C., Schröder, C.: Asynchronous Optimization Techniques for Distributed Computing Applications. In: Tolk, A., Padilla, J. J., Jafar, S. (eds.) Proceedings of the 2015 Spring Simulation Multi Conference, 48th Annual Simulation Symposium, vol. 47, no. 2, pp. 49 – 57. IEEE Press, Virginia, Alexandria (2015).Google Scholar
  8. 8.
    Wu, J.: Advances in K-means Clustering: A Data Mining Thinking. Springer, Heidelberg New York Dordrecht, London (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • André Mueß
    • 1
    Email author
  • Jens Weber
    • 1
  • Raphael-Elias Reisch
    • 2
  • Benjamin Jurke
    • 3
  1. 1.Heinz Nixdorf InstitutWirtschaftsinformatik, insb. CIMPaderbornGermany
  2. 2.Fachbereich Ingenieurwissenschaften und MathematikFachhochschule BielefeldBielefeldGermany
  3. 3.DMG MORI AGBielefeldGermany

Personalised recommendations