Advertisement

Property Preserving Symmetric Encryption Revisited

  • Sanjit Chatterjee
  • M. Prem Laxman Das
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9453)

Abstract

At EUROCRYPT 2012 Pandey and Rouselakis introduced the notion of property preserving symmetric encryption which enables checking for a property on plaintexts by running a public test on the corresponding ciphertexts. Their primary contributions are: (i) a separation between ‘find-then-guess’ and ‘left-or-right’ security notions; (ii) a concrete construction for left-or-right secure orthogonality testing in composite order bilinear groups.

This work undertakes a comprehensive (crypt)analysis of property preserving symmetric encryption on both these fronts. We observe that the quadratic residue based property used in their separation result is a special case of testing equality of one-bit messages, suggest a very simple and efficient deterministic encryption scheme for testing equality and show that the two security notions, find-then-guess and left-or-right, are tightly equivalent in this setting. On the other hand, the separation result easily generalizes for the equality property. So contextualized, we posit that the question of separation between security notions is property specific and subtler than what the authors envisaged; mandating further critical investigation. Next, we show that given a find-then-guess secure orthogonality preserving encryption of vectors of length 2n, there exists left-or-right secure orthogonality preserving encryption of vectors of length n, giving further evidence that find-then-guess is indeed a meaningful notion of security for property preserving encryption. Finally, we cryptanalyze the scheme for testing orthogonality. A simple distinguishing attack establishes that it is not even the weakest selective find-then-guess secure. Our main attack extracts out the subgroup elements used to mask the message vector and indicates greater vulnerabilities in the construction beyond indistinguishability. Overall, our work underlines the importance of cryptanalysis in provable security.

Keywords

Bilinear pairings Property preserving encryption Predicate private encryption Symmetric key 

Notes

Acknowledgements

The authors wish to thank the anonymous reviewers for their valuable comments. The authors also thank Chethan Kamath, Neal Koblitz, Alfred Menezes, Omkant Pandey, Yannis Rouselakis and Palash Sarkar for their comments on a preliminary version of this work.

References

  1. 1.
    Agrawal, S., Agrawal, S., Badrinarayanan, S., Kumarasubramanian, A., Prabhakaran, M., Sahai, A.: Function Private Functional Encryption and Property Preserving Encryption : New Definitions and Positive Results. Cryptology ePrint Archive, Report 2013/744 (2013). http://eprint.iacr.org/
  2. 2.
    Amanatidis, G., Boldyreva, A., O’Neill, A.: Provably-secure schemes for basic query support in outsourced databases. In: Barker, S., Ahn, G.-J. (eds.) Data and Applications Security 2007. LNCS, vol. 4602, pp. 14–30. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  3. 3.
    Bach, E., Shallit, J.O.: Algorithmic Number Theory. Foundations of Computing. MIT Press, Cambridge (1996) zbMATHGoogle Scholar
  4. 4.
    Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of symmetric encryption. In: FOCS, pp. 394–403. IEEE Computer Society (1997)Google Scholar
  5. 5.
    Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, p. 26. Springer, Heidelberg (1998) Google Scholar
  6. 6.
    Bellare, M., O’Neill, A.: Semantically-secure functional encryption: possibility results, impossibility results and the quest for a general definition. In: Abdalla, M., Nita-Rotaru, C., Dahab, R. (eds.) CANS 2013. LNCS, vol. 8257, pp. 218–234. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  7. 7.
    Bellare, M., Ristenpart, T., Rogaway, P., Stegers, T.: Format-preserving encryption. In: Jacobson Jr, M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 295–312. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  8. 8.
    Boldyreva, A., Chenette, N., Lee, Y., O’Neill, A.: Order-preserving symmetric encryption. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 224–241. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  9. 9.
    Boldyreva, A., Chenette, N., Lee, Y., ONeill, A.: Order-Preserving Symmetric Encryption. Cryptology ePrint Archive, Report 2012/624 (2012). http://eprint.iacr.org/
  10. 10.
    Boldyreva, A., Chenette, N., O’Neill, A.: Order-preserving encryption revisited: improved security analysis and alternative solutions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 578–595. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  11. 11.
    Boneh, D., Boyen, X.: Efficient selective identity-based encryption without random oracles. J. Cryptol. 24(4), 659–693 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 440–456. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  13. 13.
    Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  14. 14.
    Boneh, D., Raghunathan, A., Segev, G.: Function-private identity-based encryption: hiding the function in functional encryption. In: Canetti, R., Garay , J.A. (eds.) [18], pp. 461–478 (2013)Google Scholar
  15. 15.
    Boneh, D., Raghunathan, A., Segev, G.: Function-private subspace-membership encryption and its applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 255–275. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  16. 16.
    Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  17. 17.
    Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  18. 18.
    Canetti, R., Garay, J.A. (eds.): CRYPTO 2013, Part II. LNCS, vol. 8043. Springer, Heidelberg (2013) Google Scholar
  19. 19.
    De Caro, A., Iovino, V., Persiano, G.: Fully secure anonymous HIBE and secret-key anonymous IBE with short ciphertexts. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing 2010. LNCS, vol. 6487, pp. 347–366. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  20. 20.
    Chatterjee, S.,Das, M.P.L.: Property Preserving Symmetric Encryption Revisited. Cryptology ePrint Archive, Report 2013/830 (2013). http://eprint.iacr.org/
  21. 21.
    Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based encryption for circuits from multilinear maps. In: Canetti, R., Garay, J.A. (eds.) [18], pp. 479–499 (2013)Google Scholar
  22. 22.
    Gentry, C.: Fully Homomorphic encryption using ideal lattices. In: Mitzenmacher, M. (ed.) STOC, pp. 169–178. ACM (2009)Google Scholar
  23. 23.
    Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog overhead. In: Pointcheval, D., Johansson, T. (eds.) [30], pp. 465–482 (2012)Google Scholar
  24. 24.
    Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  25. 25.
    Goldwasser, S., Gordon, S.D., Goyal, V., Jain, A., Katz, J., Liu, F.-H., Sahai, A., Shi, E., Zhou, H.-S.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  26. 26.
    Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: Juels, A., Wright, R.N., De Capitani di Vimercati, S. (eds.) ACM Conference on Computer and Communications Security, pp. 89–98. ACM (2006)Google Scholar
  27. 27.
    Guha, S., Meyerson, A., Mishra, N., Motwani, R., O’Callaghan, L.: Clustering data streams: theory and practice. IEEE Trans. Knowl. Data Eng. 15(3), 515–528 (2003)CrossRefGoogle Scholar
  28. 28.
    Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, polynomial equations, and inner products. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  29. 29.
    Pandey, O., Rouselakis, Y.: Property preserving symmetric encryption. In: Pointcheval, D., Johansson, T. (eds.) [30], pp. 375–391 (2012)Google Scholar
  30. 30.
    David, P., Johansson, T.: EUROCRYPT 2012. LNCS, vol. 7237. Springer, Heidelberg (2012) zbMATHGoogle Scholar
  31. 31.
    Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap problem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  32. 32.
    Shen, E., Shi, E., Waters, B.: Predicate privacy in encryption systems. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 457–473. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  33. 33.
    Shi, E., Bethencourt, J., Chan, H.T.-H., Song, D.X., Perrig, A.: Multi-dimensional range query over encrypted data. In: IEEE Symposium on Security and Privacy, pp. 350–364. IEEE Computer Society (2007)Google Scholar
  34. 34.
    Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted data. In: IEEE Symposium on Security and Privacy, pp. 44–55. IEEE Computer Society (2000)Google Scholar
  35. 35.
    van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010) CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologc Research 2015

Authors and Affiliations

  1. 1.Department of Computer Science and AutomationIndian Institute of ScienceBengaluruIndia
  2. 2.Society for Electronic Transactions and SecurityChennaiIndia

Personalised recommendations