International Conference on the Theory and Application of Cryptology and Information Security

Advances in Cryptology -- ASIACRYPT 2015 pp 103-120 | Cite as

Multilinear and Aggregate Pseudorandom Functions: New Constructions and Improved Security

  • Michel Abdalla
  • Fabrice Benhamouda
  • Alain Passelègue
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9452)

Abstract

Since its introduction, pseudorandom functions (PRFs) have become one of the main building blocks of cryptographic protocols. In this work, we revisit two recent extensions of standard PRFs, namely multilinear and aggregate PRFs, and provide several new results for these primitives. In the case of aggregate PRFs, one of our main results is a proof of security for the Naor-Reingold PRF with respect to read-once boolean aggregate queries under the standard Decision Diffie-Hellman problem, which was an open problem. In the case of multilinear PRFs, one of our main contributions is the construction of new multilinear PRFs achieving indistinguishability from random symmetric and skew-symmetric multilinear functions, which was also left as an open problem. In order to achieve these results, our main technical tool is a simple and natural generalization of the recent linear independent polynomial framework for PRFs proposed by Abdalla, Benhamouda, and Passelègue in Crypto 2015, that can handle larger classes of PRF constructions. In addition to simplifying and unifying proofs for multilinear and aggregate PRFs, our new framework also yields new constructions which are secure under weaker assumptions, such as the decisional k-linear assumption.

Keywords

Pseudorandom functions Multilinear PRFs Aggregate PRFs 

References

  1. 1.
    Abdalla, M., Benhamouda, F., Passelègue, A.: An algebraic framework for pseudorandom functions and applications to related-key security. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015, Part I. LNCS, vol. 9215, pp. 388–409. Springer, Heidelberg (2015)Google Scholar
  2. 2.
    Abdalla, M., Benhamouda, F., Passelègue, A., Paterson, K.G.: Related-key security for pseudorandom functions beyond the linear barrier. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 77–94. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  3. 3.
    Abdalla, M., Benhamouda, F., Passelgue, A.: Multilinear and aggregate pseudorandom functions: new constructions and improved security, full version of this paper available at Cryptology ePrint Archive. http://eprint.iacr.org
  4. 4.
    Advanced Encryption Standard (AES). National Institute of Standards and Technology (NIST), FIPS PUB 197, U.S. Department of Commerce, November 2001Google Scholar
  5. 5.
    Bellare, M., Rogaway, P.: The security of triple encryption and a framework for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  6. 6.
    Bogdanov, A., Wee, H.M.: A stateful implementation of a random function supporting parity queries over hypercubes. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) RANDOM 2004 and APPROX 2004. LNCS, vol. 3122, pp. 298–309. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  7. 7.
    Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  8. 8.
    Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 440–456. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  9. 9.
    Boneh, D., Waters, B.: Constrained pseudorandom functions and their applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 280–300. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  10. 10.
    Boyen, X.: The uber-assumption family. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 39–56. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  11. 11.
    Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom functions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  12. 12.
    Cohen, A., Goldwasser, S., Vaikuntanathan, V.: Aggregate pseudorandom functions and connections to learning. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 61–89. Springer, Heidelberg (2015) CrossRefGoogle Scholar
  13. 13.
    Cohen, A., Holmgren, J.: Multilinear Pseudorandom Functions. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9134, pp. 331–342. Springer, Heidelberg (2015) Google Scholar
  14. 14.
    Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  15. 15.
    Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM 33(4), 792–807 (1986)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  17. 17.
    Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseudorandom functions and applications. In: Sadeghi, A.R., Gligor, V.D., Yung, M. (eds.) ACM CCS 2013, pp. 669–684, ACM Press, November 2013Google Scholar
  18. 18.
    Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random functions. In: 38th FOCS, pp. 458–467, IEEE Computer Society Press, October 1997Google Scholar
  19. 19.
    Shacham, H.: A cramer-shoup encryption scheme from the linear assumption and from progressively weaker linear variants. Cryptology ePrint Archive, Report 2007/074 (2007). http://eprint.iacr.org/2007/074

Copyright information

© International Association for Cryptologc Research 2015

Authors and Affiliations

  • Michel Abdalla
    • 1
  • Fabrice Benhamouda
    • 1
  • Alain Passelègue
    • 1
  1. 1.ENS, CNRS, INRIA, and PSLParisFrance

Personalised recommendations