Advertisement

Adaptively Secure Puncturable Pseudorandom Functions in the Standard Model

  • Susan HohenbergerEmail author
  • Venkata Koppula
  • Brent Waters
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9452)

Abstract

We study the adaptive security of constrained PRFs in the standard model. We initiate our exploration with puncturable PRFs. A puncturable PRF family is a special class of constrained PRFs, where the constrained key is associated with an element \(x'\) in the input domain. The key allows evaluation at all points \(x\ne x'\).

We show how to build puncturable PRFs with adaptive security proofs in the standard model that involve only polynomial loss to the underlying assumptions. Prior work had either super-polynomial loss or applied the random oracle heuristic. Our construction uses indistinguishability obfuscation and DDH-hard algebraic groups of composite order.

More generally, one can consider a t-puncturable PRF: PRFs that can be punctured at any set of inputs S, provided the size of S is less than a fixed polynomial. We additionally show how to transform any (single) puncturable PRF family to a t-puncturable PRF family, using indistinguishability obfuscation.

Keywords

Random Element Evaluation Query Random Oracle Model Pseudorandom Function Flip Coin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  2. 2.
    Bitansky, N., Canetti, R., Paneth, O., Rosen, A.: Indistinguishability obfuscation vs. auxiliary-input extractable functions: One must fall. Cryptology ePrint Archive, Report 2013/641 (2013). http://eprint.iacr.org/
  3. 3.
    Boneh, D., Boyen, X.: Secure identity based encryption without random oracles. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  4. 4.
    Boneh, D., Waters, B.: Constrained pseudorandom functions and their applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 280–300. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  5. 5.
    Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and more from indistinguishability obfuscation. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 480–499. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  6. 6.
    Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom functions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  7. 7.
    Chandran, N., Raghuraman, S., Vinayagamurthy, D.: Constrained pseudorandom functions: Verifiable and delegatable. Cryptology ePrint Archive, Report 2014/522 (2014). http://eprint.iacr.org/
  8. 8.
    Chase, M., Meiklejohn, S.: Déjà Q: using dual systems to revisit q-type assumptions. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 622–639. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  9. 9.
    Freire, E.S.V., Hofheinz, D., Paterson, K.G., Striecks, C.: Programmable hash functions in the multilinear setting. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 513–530. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  10. 10.
    Fuchsbauer, G.: Constrained verifiable random functions. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 95–114. Springer, Heidelberg (2014) Google Scholar
  11. 11.
    Fuchsbauer, G., Konstantinov, M., Pietrzak, K., Rao, V.: Adaptive security of constrained PRFs. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 82–101. Springer, Heidelberg (2014) Google Scholar
  12. 12.
    Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: FOCS (2013)Google Scholar
  13. 13.
    Gentry, C., Lewko, A., Sahai, A., Waters, B.: Indistinguishability obfuscation from the multilinear subgroup elimination assumption. Cryptology ePrint Archive, Report 2014/309 (2014). http://eprint.iacr.org/
  14. 14.
    Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions (extended abstract). In: FOCS, pp. 464–479 (1984)Google Scholar
  15. 15.
    Golle, P., Jarecki, S., Mironov, I.: Cryptographic primitives enforcing communication and storage complexity. In: Financial Cryptography, pp. 120–135 (2002)Google Scholar
  16. 16.
    Hofheinz, D.: Fully secure constrained pseudorandom functions using random oracles. IACR Cryptology ePrint Archive, Report 2014/372 (2014)Google Scholar
  17. 17.
    Hofheinz, D., Kiltz, E.: Programmable hash functions and their applications. J. Cryptology 25(3), 484–527 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Hohenberger, S., Sahai, A., Waters, B.: Full domain hash from (Leveled) multilinear maps and identity-based aggregate signatures. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 494–512. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  19. 19.
    Hohenberger, S., Sahai, A., Waters, B.: Replacing a random oracle: full domain hash from indistinguishability obfuscation. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 201–220. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  20. 20.
    Hohenberger, S., Waters, B.: Constructing verifiable random functions with large input spaces. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 656–672. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  21. 21.
    Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseudorandom functions and applications. In: ACM Conference on Computer and Communications Security, pp. 669–684 (2013)Google Scholar
  22. 22.
    Lewko, A., Waters, B.: New proof methods for attribute-based encryption: achieving full security through selective techniques. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  23. 23.
    Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random functions. J. ACM 51(2), 231–262 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryption, and more. In: STOC, pp. 475–484 (2014)Google Scholar
  25. 25.
    Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005) CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologc Research 2015

Authors and Affiliations

  • Susan Hohenberger
    • 1
    Email author
  • Venkata Koppula
    • 2
  • Brent Waters
    • 2
  1. 1.Johns Hopkins UniversityBaltimoreUSA
  2. 2.University of Texas at AustinAustinUSA

Personalised recommendations