International Conference on the Theory and Application of Cryptology and Information Security

Advances in Cryptology -- ASIACRYPT 2015 pp 656-680 | Cite as

Secret Sharing and Statistical Zero Knowledge

  • Vinod Vaikuntanathan
  • Prashant Nalini Vasudevan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9452)

Abstract

We show a general connection between various types of statistical zero-knowledge (SZK) proof systems and (unconditionally secure) secret sharing schemes. Viewed through the SZK lens, we obtain several new results on secret-sharing:
  • Characterizations: We obtain an almost-characterization of access structures for which there are secret-sharing schemes with an efficient sharing algorithm (but not necessarily efficient reconstruction). In particular, we show that for every language \(L \in {{\mathbf {SZK}}_{\mathbf {L}}}\) (the class of languages that have statistical zero knowledge proofs with log-space verifiers and simulators), a (monotonized) access structure associated with L has such a secret-sharing scheme. Conversely, we show that such secret-sharing schemes can only exist for languages in \({\mathbf {SZK}}\).

  • Constructions: We show new constructions of secret-sharing schemes with both efficient sharing and efficient reconstruction for access structures associated with languages that are in \({\mathbf {P}}\), but are not known to be in \({\mathbf {NC}}\), namely Bounded-Degree Graph Isomorphism and constant-dimensional lattice problems. In particular, this gives us the first combinatorial access structure that is conjectured to be outside \({\mathbf {NC}}\) but has an efficient secret-sharing scheme. Previous such constructions (Beimel and Ishai; CCC 2001) were algebraic and number-theoretic in nature.

  • Limitations: We also show that universally-efficient secret-sharing schemes, where the complexity of computing the shares is a polynomial independent of the complexity of deciding the access structure, cannot exist for all (monotone languages in) \(\mathbf {P}\), unless there is a polynomial q such that \({\mathbf {P}} \subseteq {\mathbf {DSPACE}}(q(n))\).

Keywords

Statistical zero knowledge Secret sharing 

Notes

Acknowledgments

We thank an anonymous ASIACRYPT reviewer for comments that helped improve the presentation of this paper.

References

  1. 1.
    Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in \(nc^{0}\). SIAM J. Comput. 36(4), 845–888 (2006)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Arvind, V., Torán, J.: Isomorphism testing: perspective and open problems. Bull. EATCS 86, 66–84 (2005)MathSciNetMATHGoogle Scholar
  3. 3.
    Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., Yang, K.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 6 (2012)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Beimel, A.: Secret-sharing schemes: a survey. In: Chee, Y.M., Guo, Z., Ling, S., Shao, F., Tang, Y., Wang, H., Xing, C. (eds.) IWCC 2011. LNCS, vol. 6639, pp. 11–46. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  5. 5.
    Beimel, A., Ishai, Y.: On the power of nonlinear secret-sharing. IACR Cryptol. ePrint Arch. 2001, 30 (2001)MATHGoogle Scholar
  6. 6.
    Benaloh, J.C., Leichter, J.: Generalized secret sharing and monotone functions. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 27–35. Springer, Heidelberg (1990) Google Scholar
  7. 7.
    Bitansky, N., Garg, S., Telang, S.: Succinct randomized encodings and their applications. IACR Cryptol. ePrint Arch. 2014, 771 (2014)MATHGoogle Scholar
  8. 8.
    Blakley, G.: Safeguarding cryptographic keys. In: Proceedings of the National Computer Conference, vol. 48, pp. 313–317 (1979)Google Scholar
  9. 9.
    Blundo, C., De Santis, A., De Simone, R., Vaccaro, U.: Tight bounds on the information rate of secret sharing schemes. Des. Codes Cryptography 11(2), 107–122 (1997)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Canetti, R., Holmgren, J., Jain, A., Vaikuntanathan, V.: Indistinguishability obfuscation of iterated circuits and RAM programs. IACR Cryptology ePrint Archive 2014, 769 (2014)MATHGoogle Scholar
  11. 11.
    Csirmaz, L.: The size of a share must be large. J. Cryptology 10(4), 223–231 (1997)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Dvir, Z., Gutfreund, D., Rothblum, G. N., Vadhan, S.: On approximating the entropy of polynomial mappings. In: Proceedings of the 2nd Innovations in Computer Science Conference, pp. 460–475 (2011)Google Scholar
  13. 13.
    Fortnow, L., Lund, C.: Interactive proof systems and alternating time-space complexity. Theor. Comput. Sci. 113(1), 55–73 (1993)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: FOCS, pp. 40–49 (2013)Google Scholar
  15. 15.
    Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity and a methodology of cryptographic protocol design (extended abstract). In: 27th Annual Symposium on Foundations of Computer Science, Toronto, Canada, 27–29 October 1986, pp. 174–187 (1986)Google Scholar
  16. 16.
    Greenlaw, R., Hoover, H.J., Ruzzo, W.L.: Limits to Parallel Computation: P-completeness Theory. Oxford University Press Inc, New York (1995)MATHGoogle Scholar
  17. 17.
    Ishai, Y., Kushilevitz, E.: Randomizing polynomials: A new representation with applications to round-efficient secure computation. In: FOCS, pp. 294–304 (2000)Google Scholar
  18. 18.
    Ishai, Y., Wee, H.: Partial garbling schemes and their applications. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 650–662. Springer, Heidelberg (2014) Google Scholar
  19. 19.
    Ito, M., Saio, A., Nishizeki, T.: Multiple assignment scheme for sharing secret. J. Cryptology 6(1), 15–20 (1993)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Karchmer, M., Wigderson, A.: On span programs. In: Proceedings of the Eigth Annual Structure in Complexity Theory Conference, San Diego, CA, USA, May 18–21, 1993, pp. 102–111. IEEE Computer Society (1993)Google Scholar
  21. 21.
    Karnin, E.D., Greene, J.W., Hellman, M.E.: On secret sharing systems. IEEE Trans. Inf. Theor. 29(1), 35–41 (1983)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Komargodski, I., Naor, M., Yogev, E.: Secret-sharing for \(\sf {NP}\). In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 254–273. Springer, Heidelberg (2014) Google Scholar
  23. 23.
    Koppula, V., Lewko, A. B., Waters, B.: Indistinguishability obfuscation for turing machines with unbounded memory. IACR Cryptology ePrint Archive, 2014/925 (2014)Google Scholar
  24. 24.
    Lenstra Jr., A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational coefficients. Math. Ann. 261(4), 515–534 (1982)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Lin, H., Pass, R.: Succinct garbling schemes and applications. IACR Cryptology ePrint Archive 2014, 766 (2014)Google Scholar
  26. 26.
    Luks, E.M.: Isomorphism of graphs of bounded valence can be tested in polynomial time. In: FOCS, pp. 42–49 (1980)Google Scholar
  27. 27.
    Razborov, A.A.: Lower bounds on the monotone complexity of some Boolean functions. Doklady Akademii Nauk SSSR 285, 798–801 (1985)MathSciNetMATHGoogle Scholar
  28. 28.
    Sahai, A., Vadhan, S.P.: A complete problem for statistical zero knowledge. Electron. Colloquium on Comput. Complex. (ECCC) 7(84) (2000)Google Scholar
  29. 29.
    Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Tardos, É.: The gap between monotone and non-monotone circuit complexity is exponential. Combinatorica 8(1), 141–142 (1988)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Vadhan, S.: A study of statistical zero-knowledge proofs. Ph.D. thesis, Massachusetts Institute of Technology (1999)Google Scholar
  32. 32.
    Vinod, V., Narayanan, A., Srinathan, K., Pandu Rangan, C., Kim, K.: On the power of computational secret sharing. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 162–176. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  33. 33.
    Wegener, I.: The Complexity of Boolean Functions. Wiley, New York (1987) MATHGoogle Scholar
  34. 34.
    Yao, A.: Unpublished manuscript (1989). Presented at Oberwolfach and DIMACS WorkshopsGoogle Scholar

Copyright information

© International Association for Cryptologc Research 2015

Authors and Affiliations

  • Vinod Vaikuntanathan
    • 1
  • Prashant Nalini Vasudevan
    • 1
  1. 1.MIT CSAILCambridgeUSA

Personalised recommendations