Advertisement

Riding on Asymmetry: Efficient ABE for Branching Programs

  • Sergey Gorbunov
  • Dhinakaran Vinayagamurthy
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9452)

Abstract

In an Attribute-Based Encryption (ABE) scheme the ciphertext encrypting a message \(\mu \), is associated with a public attribute vector \(\mathbf {{x}}\) and a secret key \( \mathsf {sk}_P\) is associated with a predicate P. The decryption returns \(\mu \) if and only if \(P(\mathbf {{x}}) = 1\). ABE provides efficient and simple mechanism for data sharing supporting fine-grained access control. Moreover, it is used as a critical component in constructions of succinct functional encryption, reusable garbled circuits, token-based obfuscation and more.

In this work, we describe a new efficient ABE scheme for a family of branching programs with short secret keys and from a mild assumption. In particular, in our construction the size of the secret key for a branching program P is \(|P| + \mathrm{poly}(\lambda )\), where \(\lambda \) is the security parameter. Our construction is secure assuming the standard Learning With Errors (LWE) problem with approximation factors \(n^{\omega (1)}\). Previous constructions relied on \(n^{O(\log n)}\) approximation factors of LWE (resulting in less efficient parameters instantiation) or had large secret keys of size \(|P| \times \mathrm{poly}(\lambda )\). We rely on techniques developed by Boneh et al. (EUROCRYPT’14) and Brakerski et al. (ITCS’14) in the context of ABE for circuits and fully-homomorphic encryption.

References

  1. 1.
    Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert [23], pp. 553–572Google Scholar
  2. 2.
    Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional encryption for inner product predicates from learning with errors. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 21–40. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  3. 3.
    Ajtai, M.: Generating hard instances of the short basis problem. In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 1–9. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  4. 4.
    Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice vector problem. In: Vitter, J.S., Spirakis, P.G., Yannakakis, M. (eds.) STOC, pp. 601–610, ACM (2001)Google Scholar
  5. 5.
    Akinyele, J.A., Pagano, M.W., Green, M.D., Lehmann, C.U., Peterson, Z.N.J., Rubin, A.D.: Securing electronic medical records using attribute-based encryption on mobile devices. In: Jiang, X., Bhattacharya, A., Dasgupta, P., Enck, W. (eds.) SPSM, pp. 75–86, ACM (2011)Google Scholar
  6. 6.
    Attrapadung, N., Libert, B., de Panafieu, E.: Expressive key-policy attribute-based encryption with constant-size ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 90–108. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  7. 7.
    Barrington, D.A.M.: Bounded-width polynomial-size branching programs recognize exactly those languages in nc\({^1}\). In: Hartmanis, J. (ed.) STOC, pp. 1–5, ACM (1986)Google Scholar
  8. 8.
    Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. SIAM J. Comput. 32(3), 586–615 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Boneh, D., Sahai, A., Waters, B.: Functional encryption: a new vision for public-key cryptography. Commun. ACM 55(11), 56–64 (2012)CrossRefGoogle Scholar
  10. 10.
    Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G., Vaikuntanathan, V., Vinayagamurthy, D.: Fully key-homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  11. 11.
    Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.): Symposium on Theory of Computing Conference, STOC 2013, Palo Alto, CA, USA, ACM, 1–4 Jun 2013Google Scholar
  12. 12.
    Boyen, X.: Attribute-based functional encryption on lattices. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 122–142. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  13. 13.
    Brakerski, Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE. In: Naor, M. (ed.) ITCS, pp. 1–12, ACM (2014)Google Scholar
  14. 14.
    Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis. J. Cryptol. 25(4), 601–639 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Cocks, C.: An identity based encryption scheme based on quadratic residues. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363. Springer, Heidelberg (2001) CrossRefGoogle Scholar
  16. 16.
    Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 476–493. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  17. 17.
    Emura, K., Miyaji, A., Nomura, A., Omote, K., Soshi, M.: A ciphertext-policy attribute-based encryption scheme with constant ciphertext length. In: Bao, F., Li, H., Wang, G. (eds.) ISPEC 2009. LNCS, vol. 5451, pp. 13–23. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  18. 18.
    Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  19. 19.
    Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: FOCS, pp. 40–49, IEEE Computer Society (2013)Google Scholar
  20. 20.
    Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based encryption for circuits from multilinear maps. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 479–499. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  21. 21.
    Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps from lattices. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 498–527. Springer, Heidelberg (2015) CrossRefGoogle Scholar
  22. 22.
    Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Dwork, C. (ed.) STOC, pp. 197–206, ACM (2008)Google Scholar
  23. 23.
    Gilbert, H. (ed.): EUROCRYPT 2010. LNCS, vol. 6110. Springer, Heidelberg (2010) zbMATHGoogle Scholar
  24. 24.
    Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: Reusable garbled circuits and succinct functional encryption. In: Boneh et al. [11], pp. 555–564Google Scholar
  25. 25.
    Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  26. 26.
    Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for circuits. In: Boneh et al. [11], pp. 545–554Google Scholar
  27. 27.
    Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for circuits from LWE. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 503–523. Springer, Heidelberg (2015) CrossRefGoogle Scholar
  28. 28.
    Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic signatures from standard lattices. In: Servedio, R.A., Rubinfeld, R. (eds.) STOC, pp. 469–477, ACM (2015)Google Scholar
  29. 29.
    Gorbunov, S., Vinayagamurthy, D.: Riding on asymmetry: efficient abe for branching programs. Cryptology ePrint Archive, Report 2014/819 (2014)Google Scholar
  30. 30.
    Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: Juels, A., Wright, R.N., di Vimercati, S.D.C. (eds.) CCS, pp. 89–98, ACM (2006)Google Scholar
  31. 31.
    Lewko, A.B., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure functional encryption: attribute-based encryption and (hierarchical) inner product encryption. In: Gilbert [23], pp. 62–91Google Scholar
  32. 32.
    Lewko, A., Waters, B.: New techniques for dual system encryption and fully secure HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 455–479. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  33. 33.
    Li, M., Yu, S., Zheng, Y., Ren, K., Lou, W.: Scalable and secure sharing of personal health records in cloud computing using attribute-based encryption. IEEE Trans. Parallel Distrib. Syst. 24(1), 131–143 (2013)CrossRefGoogle Scholar
  34. 34.
    Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  35. 35.
    Micciancio, D., Voulgaris, P.: A deterministic single exponential time algorithm for most lattice problems based on voronoi cell computations. In: Schulman, L.J. (ed.) STOC, pp. 351–358, ACM (2010)Google Scholar
  36. 36.
    Papanis, J., Papapanagiotou, S., Mousas, A., Lioudakis, G., Kaklamani, D., Venieris, I.: On the use of attribute-based encryption for multimedia content protection over information-centric networks. Trans. Emerg. Telecommun. Technol. 25(4), 422–435 (2014)CrossRefGoogle Scholar
  37. 37.
    Parno, B., Raykova, M., Vaikuntanathan, V.: How to delegate and verify in public: verifiable computation from attribute-based encryption. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 422–439. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  38. 38.
    Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In: Mitzenmacher, M. (ed.) STOC, pp. 333–342, ACM (2009)Google Scholar
  39. 39.
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. J. ACM 56(6), Article No. 34 (2009)Google Scholar
  40. 40.
    Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  41. 41.
    Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (2009) CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologc Research 2015

Authors and Affiliations

  1. 1.AikicryptBostonUSA
  2. 2.University of WaterlooWaterlooCanada

Personalised recommendations