Advertisement

Efficient Fully Structure-Preserving Signatures for Large Messages

  • Jens Groth
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9452)

Abstract

We construct both randomizable and strongly existentially unforgeable structure-preserving signatures for messages consisting of many group elements. To sign a message consisting of \(N=mn\) group elements we have a verification key size of m group elements and signatures contain \(n+2\) elements. Verification of a signature requires evaluating \(n+1\) pairing product equations.

We also investigate the case of fully structure-preserving signatures where it is required that the secret signing key consists of group elements only. We show a variant of our signature scheme allowing the signer to pick part of the verification key at the time of signing is still secure. This gives us both randomizable and strongly existentially unforgeable fully structure-preserving signatures. In the fully structure preserving scheme the verification key is a single group element, signatures contain \(m+n+1\) group elements and verification requires evaluating \(n+1\) pairing product equations.

Keywords

Digital signatures Pairing-based cryptography Full structure-preservation 

Notes

Acknowledgment

We thank Masayuki Abe, Markulf Kohlweiss, Miyako Ohkubo and Mehdi Tibouchi for their comments and sharing an early version of [AKOT15] with us.

References

  1. [ACD+12]
    Abe, M., Chase, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.: Constant-size structure-preserving signatures: generic constructions and simple assumptions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 4–24. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. [ADK+13]
    Abe, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.: Tagged one-time signatures: tight security and optimal tag size. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 312–331. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. [AFG+10]
    Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-preserving signatures and commitments to group elements. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. [AGHO11]
    Abe, M., Groth, J., Haralambiev, K., Ohkubo, M.: Optimal structure-preserving signatures in asymmetric bilinear groups. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 649–666. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. [AGO11]
    Abe, M., Groth, J., Ohkubo, M.: Separating short structure-preserving signatures from non-interactive assumptions. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 628–646. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. [AGOT14]
    Abe, M., Groth, J., Ohkubo, M., Tibouchi, M.: Unified, minimal and selectively randomizable structure-preserving signatures. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 688–712. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  7. [AHO12]
    Abe, M., Haralambiev, K., Ohkubo, M.: Group to group commitments do not shrink. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 301–317. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. [AKOT15]
    Abe, M., Kohlweiss, M., Ohkubo, M., Tibouchi, M.: Fully structure-preserving signatures and shrinking commitments. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 35–65. Springer, Heidelberg (2015)Google Scholar
  9. [ALP12]
    Attrapadung, N., Libert, B., Peters, T.: Computing on authenticated data: new privacy definitions and constructions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 367–385. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. [ALP13]
    Attrapadung, N., Libert, B., Peters, T.: Efficient completely context-hiding quotable and linearly homomorphic signatures. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 386–404. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. [BBG05]
    Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with constant size ciphertext. Cryptology ePrint Archive, Report 2005/015 (2005)Google Scholar
  12. [BCPW15]
    Benhamouda, F., Couteau, G., Pointcheval, D., Wee, H.: Implicit zero-knowledge arguments and applications to the malicious setting. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 107–129. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  13. [CDEN12]
    Camenisch, J., Dubovitskaya, M., Enderlein, R.R., Neven, G.: Oblivious transfer with hidden access control from attribute-based encryption. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 559–579. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. [CKLM12]
    Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable proof systems and applications. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 281–300. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. [CM15]
    Chatterjee, S., Menezes, A.: Type 2 structure-preserving signature schemes revisited. In: ASIACRYPT (2015)Google Scholar
  16. [EHK+13]
    Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  17. [ElG85]
    ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theor. 31(4), 469–472 (1985)MathSciNetCrossRefMATHGoogle Scholar
  18. [Fuc11]
    Fuchsbauer, G.: Commuting signatures and verifiable encryption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 224–245. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  19. [FV10]
    Fuchsbauer, G., Vergnaud, D.: Fair blind signatures without random oracles. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 16–33. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. [GH08]
    Green, M., Hohenberger, S.: Universally composable adaptive oblivious transfer. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 179–197. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. [GPS08]
    Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete Appl. Math. 156(16), 3113–3121 (2008)MathSciNetCrossRefMATHGoogle Scholar
  22. [Gro06]
    Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 444–459. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. [GS12]
    Groth, J., Sahai, A.: Efficient noninteractive proof systems for bilinear groups. SIAM J. Comput. 41(5), 1193–1232 (2012)MathSciNetCrossRefMATHGoogle Scholar
  24. [HJ12]
    Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 590–607. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  25. [LPJY13]
    Libert, B., Peters, T., Joye, M., Yung, M.: Linearly homomorphic structure-preserving signatures and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 289–307. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  26. [LPY12]
    Libert, B., Peters, T., Yung, M.: Group signatures with almost-for-free revocation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 571–589. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  27. [LPY15]
    Libert, B., Peters, T., Yung, M.: Short group signatures via structure-preserving signatures: standard model security from simple assumptions. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 296–316. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  28. [Nec94]
    Nechaev, V.I.: Complexity of a determinate algorithm for the discrete logarithm. Mat. Zametki 55(2), 91–101 (1994)MathSciNetMATHGoogle Scholar
  29. [Sho97]
    Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  30. [ZLG12]
    Zhang, J., Li, Z., Guo, H.: Anonymous transferable conditional E-cash. In: Keromytis, A.D., Di Pietro, R. (eds.) SecureComm 2012. LNICST, vol. 106, pp. 45–60. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologc Research 2015

Authors and Affiliations

  1. 1.University College LondonLondonUK

Personalised recommendations