Akute lymphatische Leukämie des älteren Patienten

Chapter
Part of the Springer Reference Medizin book series (SRM)

Zusammenfassung

Mehr als ein Drittel der Patienten mit akuter lymphatischer Leukämie (ALL) sind >60 Jahre alt. Daraus ergibt sich die dringende Notwendigkeit, sich mit der ALL als Erkrankung des höheren Lebensalters auseinanderzusetzen. Der Verlauf im Alter ist mit einer schlechteren Prognose vergesellschaftet, vor allem durch geringere Remissionsraten, höhere Rezidivraten und höhere Frühmortalität. Ursächlich dafür können sowohl höhere Inzidenz von Komorbiditäten, schlechter Allgemeinzustand, erhöhte Toxizität und die Zurückhaltung mit intensiven Therapiestrategien sowie die aggressivere Biologie der Erkrankung sein. Jedoch wurden in den letzten Jahren entscheidende Fortschritte sowohl in der Optimierung von Polyimmunochemotherapien gemacht als auch neue molekular zielgerichtete, besser verträgliche Therapien entwickelt, die insbesondere älteren Patienten zugutekommen und die Prognose deutlich verbessern können. Außerdem sollte, auch bei älteren Patienten, die Option einer allogenen Stammzelltransplantation mit reduzierter Konditionierung als kurative Therapiestrategie geprüft werden. Ein Mangel an klinischen Studien bei älteren Patienten erschwert die Definition des optimalen Therapiekonzepts, so dass angestrebt werden sollte, möglichst viele Patienten an Zentren zu behandeln und in klinische Studien einzuschließen.

Literatur

  1. Abdul Wahid S, Ismail N, Mohd-Idris MR et al (2014) Comparison of reduced-intensity and myeloablative conditioning regimens for allogeneic hematopoietic stem cell transplantation in patients with acute myeloid leukemia and acute lymphoblastic leukemia: a meta-analysis. Stem Cells Dev 23:2535–2552CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bassan R, Di Bona E, Lerede T et al (1996) Age-adapted moderate-dose induction and flexible outpatient postremission therapy for elderly patients with acute lymphoblastic leukemia. Leuk Lymphoma 22:295–301CrossRefPubMedGoogle Scholar
  3. Bassan R, Spinelli O, Oldani E et al (2009) Improved risk classification for risk-specific therapy based on the molecular study of minimal residual disease (MRD) in adult acute lymphoblastic leukemia (ALL). Blood 113:4153–4162CrossRefPubMedGoogle Scholar
  4. Delannoy A, Sebban C, Cony-Makhoul P et al (1997) Age-adapted induction treatment of acute lymphoblastic leukemia in the elderly and assessment of maintenance with interferon combined with chemotherapy. A multicentric prospective study in forty patients French Group for Treatment of Adult Acute Lymphoblastic Leukemia. Leukemia 11:1429–1434CrossRefPubMedGoogle Scholar
  5. Dinmohamed AG, Szabó A, Van der Mark M et al (2016) Improved survival in adult patients with acute lymphoblastic leukemia in the Netherlands: a population-based study on treatment, trial participation and survival. Leukemia 30:310–317CrossRefPubMedGoogle Scholar
  6. Fielding AK, Rowe JM, Buck G et al (2014) UKALLXII/ECOG2993: addition of imatinib to a standard treatment regimen enhances long-term outcomes in Philadelphia positive acute lymphoblastic leukemia. Blood 123:843–850CrossRefPubMedPubMedCentralGoogle Scholar
  7. Gafter-Gvili A, Fraser A, Paul M et al (2005) Antibiotic prophylaxis for bacterial infections in afebrile neutropenic patients following chemotherapy. Cochrane Database Syst Rev 19:CD004386Google Scholar
  8. Giri S, Chi M, Johnson B et al (2015) Secondary acute lymphoblastic leukemia is an independent predictor of poor prognosis. Leuk Res 39:1342–1346CrossRefPubMedGoogle Scholar
  9. Gökbuget N (2013) How I treat older patients with ALL. Blood 122:1366–1375CrossRefPubMedGoogle Scholar
  10. Gökbuget N (2015) Long-term outcomes after blinatumomab treatment: follow-up of a phase 2 study in patients (Pts) with minimal residual disease (MRD) positive B-cell precursor acute lymphoblastic leukemia (ALL) [Abstract]. Blood 126: Abstract 680Google Scholar
  11. Gökbuget N, Hartog MC, Dengler J et al (2008) First analysis of prognostic factors in elderly Ph/BCR-ABL negative ALL including comorbidity scores: different factors predict mortality and relapse. Onkologie 31(S4):V29Google Scholar
  12. Gökbuget N, Hartog MC, Bassan R et al (2015) Liposomal cytarabine is effective and tolerable in the treatment of central nervous system relapse of acute lymphoblastic leukemia and very aggressive lymphoma. Haematologica 96:238–244CrossRefGoogle Scholar
  13. Gökbuget N, Kneba M, Raff T et al (2012a) Adult patients with acute lymphoblastic leukemia and molecular failure display a poor prognosis and are candidates for stem cell transplantation and targeted therapies. Blood 120:1868–1876CrossRefPubMedGoogle Scholar
  14. Gökbuget N, Stanze D, Beck J et al (2012b) Outcome of relapsed adult lymphoblastic leukemia depends on response to salvage chemotherapy, prognostic factors, and performance of stem cell transplantation. Blood 120:2032–2041CrossRefPubMedGoogle Scholar
  15. Gökbuget N, Beck J, Brandt K et al (2012c) Moderate intensive chemotherapy including CNS-prophylaxis with liposomal cytarabine is feasible and effective in older patients with Ph-negative acute lymphoblastic leukemia (ALL): results of a prospective trial from the German Multicenter Study Group for adult ALL (GMALL) [Abstract]. Blood 120: Abstract 1493Google Scholar
  16. Guignabert C, Phan C, Seferian A et al (2016) Dasatinib induces lung vascular toxicity and predisposes to pulmonary hypertension. J Clin Invest.  https://doi.org/10.1172/JCI86249PubMedPubMedCentralGoogle Scholar
  17. Guru Murthy GS, Venkitachalam R, Mehta P (2015) Trends in survival outcomes of B-lineage acute lymphoblastic leukemia in elderly patients: analysis of surveillance, epidemiology, and end results database. Leuk Lymphoma 56:2296–2300CrossRefPubMedGoogle Scholar
  18. Hoelzer D, Gökbuget N (2012) Change in prognostic factors. Leukemia Suppl 1(Suppl 2):1–2CrossRefGoogle Scholar
  19. Hoelzer D, Thiel E, Löffler H et al (1988) Prognostic factors in a multicenter study for treatment of acute lymphoblastic leukemia in adults. Blood 71:123–131PubMedGoogle Scholar
  20. Hoelzer D, Walewski J, Döhner H et al (2014) Improved outcome of adult Burkitt lymphoma/leukemia with rituximab and chemotherapy: report of a large prospective multicenter trial. Blood 124:3870–3879CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hoelzer D, Bassan R, Dombret H et al (2016) Acute lymphoblastic leukaemia in adult patients: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol.  https://doi.org/10.1093/annonc/mdw025PubMedGoogle Scholar
  22. Jabbour E, Kantarjian H, Ravandi F et al (2015) Combination of hyper-CVAD with ponatinib as first-line therapy for patients with Philadelphia chromosome-positive acute lymphoblastic leukaemia: a single-centre, phase 2 study. Lancet Oncol 16:1547–1555CrossRefPubMedPubMedCentralGoogle Scholar
  23. Jabbour E, Short NJ, Jorgensen JL et al (2016) Differential impact of minimal residual disease negativity according to the salvage status in patients with relapsed/refractory B-cell acute lymphoblastic leukemia. Cancer.  https://doi.org/10.1002/cncr.30264Google Scholar
  24. Juliusson G, Karlsson K, Hallböök H (2010) Population-based analyses in adult acute lymphoblastic leukemia. Blood 116:1011–1012CrossRefPubMedGoogle Scholar
  25. Kantarjian H, Thomas D, Jorgensen J et al (2012) Inotuzumab ozogamicin, an anti-CD22-calecheamicin conjugate, for refractory and relapsed acute lymphocytic leukaemia: a phase 2 study. Lancet Oncol 13:403–411CrossRefPubMedGoogle Scholar
  26. Kantarjian HM, DeAngelo DJ, Stelljes M et al (2016) Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia. N Engl J Med 375:740.53CrossRefPubMedGoogle Scholar
  27. Legrand O, Marie J, Marjanovic Z et al (1997) Prognostic factors in elderly acute lymphoblastic leukaemia. Br J Haematol 97:596–602CrossRefPubMedGoogle Scholar
  28. Marks DI, Pérez WS, He W et al (2008) Unrelated donor transplants in adults with Philadelphia-negative acute lymphoblastic leukemia in first complete remission. Blood 112:426–434CrossRefPubMedPubMedCentralGoogle Scholar
  29. Maury S, Chevret S, Thomas X et al (2016) Rituximab in B-lineage adult acute lymphoblastic leukemia. N Engl J Med 375:1044–1053CrossRefPubMedGoogle Scholar
  30. Mohty M, Labopin M, Volin L et al (2010) Reduced-intensity versus conventional myeloablative conditioning allogeneic stem cell transplantation for patients with acute lymphoblastic leukemia: a retrospective study for the European Group for Blood and Marrow Transplantation. Blood 116:4439–4443CrossRefPubMedGoogle Scholar
  31. Moorman AV, Chilton L, Wilkinson J et al (2010) A population-based cytogenetic study of adults with acute lymphoblastic leukemia. Blood 115:206–214CrossRefPubMedGoogle Scholar
  32. Ottmann OG, Wassmann B, Pfeifer H et al (2007) Imatinib compared with chemotherapy as front-line treatment of elderly patients with Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph + ALL). Cancer 109:2068–2076CrossRefPubMedGoogle Scholar
  33. Ottmann OG, Larson RA, Kantarjian HM et al (2013) Phase II study of nilotinib in patients with relapsed or refractory Philadelphia chromosome – positive acute lymphoblastic leukemia. Leukemia 27:1411–1413CrossRefPubMedGoogle Scholar
  34. Pagano L, Mele L, Casorelli I et al (2000) Acute lymphoblastic leukemia in the elderly. A twelve-year retrospective, single center study. Haematologica 85:1327–1329PubMedGoogle Scholar
  35. Patel B, Kirkwood A, Dey A et al (2016) Pegylated-asparaginase during induction therapy for adult acute lymphoblastic leukaemia: toxicity data from the UKALL14 trial. Leukemia.  https://doi.org/10.1038/leu.2016.219Google Scholar
  36. Robak T (2004) Acute lymphoblastic leukaemia in elderly patients: biological characteristics and therapeutic approaches. Drugs Aging 21:779–791CrossRefPubMedGoogle Scholar
  37. Rousselot P, Delannoy A (2011) Optimal pharmacotherapeutic management of acute lymphoblastic leukaemia in the elderly. Drugs Aging 28:749–764CrossRefPubMedGoogle Scholar
  38. Rousselot P, Coudé M, Gokbuget N et al (2016) Dasatinib and low-intensity chemotherapy in elderly patients with Philadelphia chromosome-positive ALL. Blood 128:774–782CrossRefPubMedPubMedCentralGoogle Scholar
  39. Rowe JM, Buck G, Burnett AK et al (2005) Induction therapy for adults with acute lymphoblastic leukemia: results of more than 1500 patients from the international ALL trial: MRC UKALL XII/ECOG E2993. Blood 106:3760–3767CrossRefPubMedGoogle Scholar
  40. Sancho JM, Ribera J, Xicoy B et al (2007) Results of the PETHEMA ALL-96 trial in elderly patients with Philadelphia chromosome-negative acute lymphoblastic leukemia. Eur J Haematol 78:102–110PubMedGoogle Scholar
  41. Solomon SR, Sizemore C, Zhang X et al (2016) Impact of donor type on outcome after allogeneic hematopoietic cell transplantation for acute leukemia. Biol Blood Marrow Transplant.  https://doi.org/10.1016/j.bbmt.2016.07.010PubMedCentralGoogle Scholar
  42. Takashima S, Miyamoto T, Kamimura T et al (2015) Effects of conditioning intensity in allogeneic stem cell transplantation for Philadelphia chromosome positive acute lymphoblastic leukemia. Int J Hematol 102:689–696CrossRefPubMedGoogle Scholar
  43. Thomas DA, O’Brien S, Faderl S et al (2010) Chemoimmunotherapy with a modified hyper-CVAD and rituximab regimen improves outcome in de novo Philadelphia chromosome-negative precursor B-lineage acute lymphoblastic leukemia. J Clin Oncol 28:3880–3889CrossRefPubMedPubMedCentralGoogle Scholar
  44. Toft N, Schmiegelow K, Klausen TW et al (2012) Adult acute lymphoblastic leukaemia in Denmark. A national population-based retrospective study on acute lymphoblastic leukaemia in Denmark 1998–2008. Br J Haematol 157:97–104CrossRefPubMedGoogle Scholar
  45. Topp MS, Kufer P, Gökbuget N et al (2011) Targeted therapy with the T-cell-engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival. J Clin Oncol 29:2493–2498CrossRefPubMedGoogle Scholar
  46. Topp MS, Gökbuget N, Zugmaier G et al (2012) Long-term follow-up of hematologic relapse-free survival in a phase 2 study of blinatumomab in patients with MRD in B-lineage ALL. Blood 120:5185–5187CrossRefPubMedGoogle Scholar
  47. Topp MS, Gökbuget N, Zugmaier G et al (2014) Phase II trial of the anti-CD19 bispecific T cell-engager blinatumomab shows hematologic and molecular remissions in patients with relapsed or refractory B-precursor acute lymphoblastic leukemia. J Clin Oncol 32:4134–4140CrossRefPubMedGoogle Scholar
  48. Topp MS, Gökbuget N, Stein AS et al (2015) Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study. Lancet Oncol 16:57–66CrossRefPubMedGoogle Scholar
  49. Villafuerte-Gutierrez P, Villalon L, Losa JE et al (2014) Treatment of febrile neutropenia and prophylaxis in hematologic malignancies: a critical review and update. Adv Hematol.  https://doi.org/10.1155/2014/986938PubMedPubMedCentralGoogle Scholar
  50. Yanada M, Takeuchi J, Sugiura I et al (2006) High complete remission rate and promising outcome by combination of imatinib and chemotherapy for newly diagnosed BCR-ABL-positive acute lymphoblastic leukemia: a phase II study by the Japan Adult Leukemia Study Group. J Clin Oncol 24:460–466CrossRefPubMedGoogle Scholar
  51. Yang L, Yu L, Chen X et al (2015) Clinical analysis of adverse drug reactions between vincristine and triazoles in children with acute lymphoblastic leukemia. Med Sci Monit 21:1656–1661CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Medizinische Klinik IIUniversitätsklinikum FrankfurtFrankfurt/MainDeutschland

Section editors and affiliations

  • Ulrich Wedding
    • 1
  1. 1.Abteilung für PalliativmedizinUniversitätsklinikum Jena, Klinik für Innere Medizin IIJenaDeutschland

Personalised recommendations