International Symposium on Distributed Computing

Distributed Computing pp 602-616 | Cite as

Stable Leader Election in Population Protocols Requires Linear Time

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9363)

Abstract

A population protocol stably elects a leader if, for all n, starting from an initial configuration with n agents each in an identical state, with probability 1 it reaches a configuration y that is correct (exactly one agent is in a special leader state \(\ell \)) and stable (every configuration reachable from y also has a single agent in state \(\ell \)). We show that any population protocol that stably elects a leader requires \(\Omega (n)\) expected “parallel time” — \(\Omega (n^2)\) expected total pairwise interactions — to reach such a stable configuration. Our result also informs the understanding of the time complexity of chemical self-organization by showing an essential difficulty in generating exact quantities of molecular species quickly.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alistarh, D., Gelashvili, R.: Polylogarithmic-time leader election in population protocols. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 479–491. Springer, Heidelberg (2015) CrossRefGoogle Scholar
  2. 2.
    Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M., Peralta, R.: Computation in networks of passively mobile finite-state sensors. Distributed Computing 18, 235–253 (2006). http://dx.doi.org/10.1007/s00446-005-0138-3, preliminary version appeared in PODC 2004MATHCrossRefGoogle Scholar
  3. 3.
    Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Urn automata. Tech. Rep. YALEU/DCS/TR-1280, Yale University, November 2003Google Scholar
  4. 4.
    Angluin, D., Aspnes, J., Eisenstat, D.: Fast computation by population protocols with a leader. Distributed Computing 21(3), 183–199 (2008). preliminary version appeared in DISC 2006MATHCrossRefGoogle Scholar
  5. 5.
    Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational power of population protocols. Distributed Computing 20(4), 279–304 (2007)MATHCrossRefGoogle Scholar
  6. 6.
    Angluin, D., Aspnes, J., Fischer, M.J., Jiang, H.: Self-stabilizing population protocols. In: Anderson, J.H., Prencipe, G., Wattenhofer, R. (eds.) OPODIS 2005. LNCS, vol. 3974, pp. 103–117. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  7. 7.
    Bower, J.M., Bolouri, H.: Computational modeling of genetic and biochemical networks. MIT press (2004)Google Scholar
  8. 8.
    Chen, H.-L., Cummings, R., Doty, D., Soloveichik, D.: Speed faults in computation by chemical reaction networks. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 16–30. Springer, Heidelberg (2014). http://dx.doi.org/10.1007/978-3-662-45174-8_2 Google Scholar
  9. 9.
    Chen, H.L., Doty, D., Soloveichik, D.: Deterministic function computation with chemical reaction networks. Natural Computing 13(4), 517–534 (2014). preliminary version appeared in DISC 2012MathSciNetCrossRefGoogle Scholar
  10. 10.
    Chen, Y.J., Dalchau, N., Srinivas, N., Phillips, A., Cardelli, L., Soloveichik, D., Seelig, G.: Programmable chemical controllers made from DNA. Nature Nanotechnology 8(10), 755–762 (2013)CrossRefGoogle Scholar
  11. 11.
    Cunha-Ferreira, I., Bento, I., Bettencourt-Dias, M.: From zero to many: control of centriole number in development and disease. Traffic 10(5), 482–498 (2009)CrossRefGoogle Scholar
  12. 12.
    Dickson, L.E.: Finiteness of the odd perfect and primitive abundant numbers with n distinct prime factors. American Journal of Mathematics 35(4), 413–422 (1913)MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Doty, D.: Timing in chemical reaction networks. In: SODA 2014: Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 772–784, January 2014Google Scholar
  14. 14.
    Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry 81(25), 2340–2361 (1977)CrossRefGoogle Scholar
  15. 15.
    Karp, R.M., Miller, R.E.: Parallel program schemata. Journal of Computer and System Sciences 3(2), 147–195 (1969)MATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Petri, C.A.: Communication with automata. Tech. rep, DTIC Document (1966)Google Scholar
  17. 17.
    Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical kinetics. Proceedings of the National Academy of Sciences 107(12), 5393 (2010). preliminary version appeared in DISC 2008CrossRefGoogle Scholar
  18. 18.
    Volterra, V.: Variazioni e fluttuazioni del numero dindividui in specie animali conviventi. Mem. Acad. Lincei Roma 2, 31–113 (1926)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.University of California, DavisDavisUSA
  2. 2.University of Texas at AustinAustinUSA

Personalised recommendations