International Symposium on Distributed Computing

Distributed Computing pp 544-558 | Cite as

Locally Optimal Load Balancing

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9363)

Abstract

This work studies distributed algorithms for locally optimal load-balancing: We are given a graph of maximum degree \(\varDelta \), and each node has up to L units of load. The task is to distribute the load more evenly so that the loads of adjacent nodes differ by at most 1. If the graph is a path (\(\varDelta = 2\)), it is easy to solve the fractional version of the problem in O(L) communication rounds, independently of the number of nodes. We show that this is tight, and we show that it is possible to solve also the discrete version of the problem in O(L) rounds in paths. For the general case (\(\varDelta > 2\)), we show that fractional load balancing can be solved in \({{\mathrm{poly}}}(L,\varDelta )\) rounds and discrete load balancing in \(f(L,\varDelta )\) rounds for some function f, independently of the number of nodes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aiello, W., Awerbuch, B., Maggs, B., Rao, S.: Approximate load balancing on dynamic and asynchronous networks. In: Proc. 25th Annual ACM Symposium on Theory of Computing (STOC 1993), pp. 632–641. ACM Press (1993). doi:10.1145/167088.167250
  2. 2.
    Anderson, R., Lovász, L., Shor, P., Spencer, J., Tardos, E., Winograd, S.: Disks, balls, and walls: analysis of a combinatorial game. The American Mathematical Monthly 96(6), 481–493 (1989). http://www.jstor.org/stable/2323970 MATHCrossRefGoogle Scholar
  3. 3.
    Azar, Y., Broder, A.Z., Karlin, A.R., Upfal, E.: Balanced allocations. SIAM Journal on Computing 29(1), 180–200 (1999). doi:10.1137/S0097539795288490 MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality: An explanation of the \(1/f\) noise. Physical Review Letters 59(4), 381–384 (1987). doi:10.1103/PhysRevLett.59.381 MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bogdan, P., Sauerwald, T., Stauffer, A., He, S.: Balls into bins via local search. In: Proc. 24th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2013), pp. 16–34. SIAM (2013). doi:10.1137/1.9781611973105
  6. 6.
    Boyd, S., Ghosh, A., Prabhakar, B., Shah, D.: Randomized gossip algorithms. IEEE Transactions on Information Theory 52(6), 2508–2530 (2006). doi:10.1109/TIT.2006.874516 MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Bringmann, K., Sauerwald, T., Stauffer, A., Sun, H.: Balls into bins via local search: cover time and maximum loads. In: Proc. 31st International Symposium on Theoretical Aspects of Computer Science (STACS 2014), pp. 187–198 (2014). doi:10.4230/LIPIcs.STACS.2014.187
  8. 8.
    Czygrinow, A., Hanćkowiak, M., Szymańska, E., Wawrzyniak, W.: Distributed 2-approximation algorithm for the semi-matching problem. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611, pp. 210–222. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  9. 9.
    Dhar, D.: Theoretical studies of self-organized criticality. Physica A 369(1), 29–70 (2006). doi:10.1016/j.physa.2006.04.004 MathSciNetCrossRefGoogle Scholar
  10. 10.
    Feuilloley, L., Hirvonen, J., Suomela, J.: Locally optimal load balancing (2015). http://arxiv.org/abs/1502.04511
  11. 11.
    Floréen, P., Kaski, P., Polishchuk, V., Suomela, J.: Almost stable matchings by truncating the Gale-Shapley algorithm. Algorithmica 58(1), 102–118 (2010). doi:10.1007/s00453-009-9353-9. http://arxiv.org/abs/0812.4893 MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Ghosh, B., Leighton, F.T., Maggs, B., Muthukrishnan, S., Plaxton, C.G., Rajaraman, R., Richa, A.W., Tarjan, R.E., Zuckerman, D.: Tight analyses of two local load balancing algorithms. SIAM Journal on Computing 29(1), 29–64 (1999)MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Ghosh, B., Muthukrishnan, S.: Dynamic load balancing by random matchings. Journal of Computer and System Sciences 53(3), 357–370 (1996). doi:10.1006/jcss.1996.0075 MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Hańćkowiak, M., Karoński, M., Panconesi, A.: On the distributed complexity of computing maximal matchings. In: Proc. 9th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 1998), pp. 219–225. SIAM (1998)Google Scholar
  15. 15.
    Harvey, N.J.A., Ladner, R.E., Lovász, L., Tamir, T.: Semi-matchings for bipartite graphs and load balancing. Journal of Algorithms 59(1), 53–78 (2006). doi:10.1016/j.jalgor.2005.01.003 MATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Kadanoff, L.P., Nagel, S.R., Wu, L., Zhou, S.M.: Scaling and universality in avalanches. Physical Review A 39(12), 6524–6537 (1989). doi:10.1103/PhysRevA.39.6524 CrossRefGoogle Scholar
  17. 17.
    Karp, R.M., Luby, M., Meyer auf der Heide, F.: Efficient PRAM simulation on a distributed memory machine. Algorithmica 16(4–5), 517–542 (1996). doi:10.1007/s004539900063 MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Kenthapadi, K., Panigrahy, R.: Balanced allocation on graphs. In: Proc. 17th Annual ACM-SIAM Symposium on Discrete Algorithm (SODA 2006), pp. 434–443. SIAM (2006). doi:10.1145/1109557.1109606. http://arxiv.org/abs/cs/0510086
  19. 19.
    Khuller, S., Vishkin, U., Young, N.: A primal-dual parallel approximation technique applied to weighted set and vertex covers. Journal of Algorithms 17(2), 280–289 (1994). doi:10.1006/jagm.1994.1036 MATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Muthukrishnan, S., Ghosh, B., Schultz, M.H.: First- and second-order diffusive methods for rapid, coarse, distributed load balancing. Theory of Computing Systems 31(4), 331–354 (1998). doi:10.1007/s002240000092 MATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM Monographs on Discrete Mathematics and Applications. SIAM, Philadelphia (2000) CrossRefGoogle Scholar
  22. 22.
    Peleg, D., Upfal, E.: The token distribution problem. SIAM Journal on Computing 18(2), 229–243 (1989). doi:10.1137/0218015 MATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Rabani, Y., Sinclair, A., Wanka, R.: Local divergence of Markov chains and the analysis of iterative load-balancing schemes. In: Proc. 39th Annual Symposium on Foundations of Computer Science (FOCS 1998), p. 694. IEEE (1998). doi:10.1109/SFCS.1998.743520
  24. 24.
    Sauerwald, T., Sun, H.: Tight bounds for randomized load balancing on arbitrary network topologies. In: Proc. 53rd Annual Symposium on Foundations of Computer Science (FOCS 2012), pp. 341–350. IEEE, October 2012. doi:10.1109/FOCS.2012.86
  25. 25.
    Sinclair, A., Jerrum, M.: Approximate counting, uniform generation and rapidly mixing Markov chains. Information and Computation 82(1), 93–133 (1989). doi:10.1016/0890-5401(89)90067-9 MATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    Vöcking, B.: How asymmetry helps load balancing. Journal of the ACM 50(4), 568–589 (2003). doi:10.1145/792538.792546 MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Laurent Feuilloley
    • 1
    • 2
  • Juho Hirvonen
    • 2
  • Jukka Suomela
    • 2
  1. 1.École Normale Supérieure de CachanCachanFrance
  2. 2.Helsinki Institute for Information Technology HIIT, Department of Computer ScienceAalto UniversityEspooFinland

Personalised recommendations