Specifying Concurrent Problems: Beyond Linearizability and up to Tasks

(Extended Abstract)
  • Armando Castañeda
  • Sergio Rajsbaum
  • Michel Raynal
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9363)


Tasks and objects are two predominant ways of specifying distributed problems. A task specifies for each set of processes (which may run concurrently) the valid outputs of the processes. An object specifies the outputs the object may produce when it is accessed sequentially. Each one requires its own implementation notion, to tell when an execution satisfies the specification. For objects linearizability is commonly used, while for tasks implementation notions are less explored.

Sequential specifications are very convenient, especially important is the locality property of linearizability, which states that linearizable objects compose for free into a linearizable object. However, most well-known tasks have no sequential specification. Also, tasks have no clear locality property.

The paper introduces the notion of interval-sequential object. The corresponding implementation notion of interval-linearizability generalizes linearizability. Interval-linearizability allows to specify any task. However, there are sequential one-shot objects that cannot be expressed as tasks, under the simplest interpretation of a task. The paper also shows that a natural extension of the notion of a task is expressive enough to specify any interval-sequential object.


Concurrent object Task Linearizability Sequential specification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic snapshots of shared memory. Journal of the ACM 40(4), 873–890 (1993)zbMATHCrossRefGoogle Scholar
  2. 2.
    Afek, Y., Gafni, E., Lieber, O.: Tight group renaming on groups of size g is equivalent to g-consensus. In: Keidar, I. (ed.) DISC 2009. LNCS, vol. 5805, pp. 111–126. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  3. 3.
    Aspnes, J., Ellen, F.: Tight bounds for adopt-commit objects. Theory Computing Systems 55(3), 451–474 (2014)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Borowsky, E., Gafni, E.: Immediate atomic snapshots and fast renaming. In: Proc. 12th ACM Symposium on Principles of Distributed Computing (PODC 1993). ACM Press, pp. 41–51 (1993)Google Scholar
  5. 5.
    Borowsky, E., Gafni, E., Lynch, N., Rajsbaum, S.: The BG distributed simulation algorithm. Distributed Computing 14(3), 127–146 (2001)CrossRefGoogle Scholar
  6. 6.
    Chandra, T.D., Hadzilacos, V., Jayanti, P., Toueg, S.: Generalized irreducibility of consensus and the equivalence of \(t\)-resilient and wait-free implementations of consensus. SIAM Journal of Computing 34(2), 333–357 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Castañeda, A., Rajsbaum, S., Raynal, M.: Specifying Concurrent Problems: Beyond Linearizability.
  8. 8.
    Chaudhuri, S.: More choices allow more faults: set consensus problems in totally asynchronous systems. Information and Computation 105(1), 132–158 (1993)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Conde, R., Rajsbaum, S.: The complexity gap between consensus and safe-consensus. In: Halldórsson, M.M. (ed.) SIROCCO 2014. LNCS, vol. 8576, pp. 68–82. Springer, Heidelberg (2014) Google Scholar
  10. 10.
    Filipović, I., O’Hearn, P., Rinetky, N., Yang, H.: Abstraction for concurrent objects. Theoretical Computer Science 411(51–52), 4379–4398 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Friedman, R., Vitenberg, R., Chokler, G.: On the composability of consistency conditions. Information Processing Letters 86(4), 169–176 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Gafni, E.: Round-by-round fault detectors: unifying synchrony and asynchrony. In: Proc. 17th ACM Symposium on Principles of Distributed Computing (PODC 1998). ACM Press, pp. 143–152 (1998)Google Scholar
  13. 13.
    Gafni, E., Snapshot for time: the one-shot case. arXiv:1408.3432v1, p. 10 (2014)
  14. 14.
    van Glabbeek, R.J.: On the expressiveness of higher dimensional automata. Theoretical Computer Science 356(3), 265–290 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Gotsman, A., Musuvathi, M., Yang, H.: Show no weakness: sequentially consistent specifications of TSO libraries. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611, pp. 31–45. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  16. 16.
    Hemed, N., Rinetzky, N.: Brief announcement: concurrency-aware linearizability. In: Proc. 33th ACM Symposium on Principles of Distributed Computing (PODC 2014), pp. 209–211. ACM Press (2014). Full version to appear in these proceedingsGoogle Scholar
  17. 17.
    Herlihy, M., Kozlov, D., Rajsbaum, S.: Distributed computing through ombinatorial topology. Morgan Kaufmann (2014)Google Scholar
  18. 18.
    Herlihy, M., Rajsbaum, S., Raynal, M.: Power and limits of distributed computing shared memory models. Theoretical Computer Science 509, 3–24 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Herlihy, M., Shavit, N.: The art of multiprocessor programming. Morgan Kaufmann (2008)Google Scholar
  20. 20.
    Herlihy, M., Wing, J.: Linearizability: a correctness condition for concurrent objects. ACM Transactions on Progr. Lang. and Systems 12(3), 463–492 (1990)CrossRefGoogle Scholar
  21. 21.
    Neiger, G.: Set-linearizability. brief announcement. In: Proc. 13th ACM Symposium on Principles of Distributed Computing (PODC 1994). ACM Press, p. 396 (1994)Google Scholar
  22. 22.
    Raynal, M.: Concurrent programming: algorithms, principles, and foundations. Springer (2013)Google Scholar
  23. 23.
    Scherer III, W.N., Scott, M.L.: Nonblocking concurrent data structures with condition synchronization. In: Guerraoui, R. (ed.) DISC 2004. LNCS, vol. 3274, pp. 174–187. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  24. 24.
    Shavit, N.: Data structures in the multicore age. Comm. ACM 54(3), 76–84 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Armando Castañeda
    • 1
  • Sergio Rajsbaum
    • 1
  • Michel Raynal
    • 2
  1. 1.Instituto de Matemáticas, UNAMMéxico D.FMéxico
  2. 2.IUF & IRISA (Université de Rennes)RennesFrance

Personalised recommendations