Modelling and Optimizing Bandwidth Provision for Interacting Cloud Services

  • Chao Chen
  • Ligang HeEmail author
  • Bo Gao
  • Cheng Chang
  • Kenli Li
  • Keqin Li
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9435)


Non-deterministic communication patterns among interacting Cloud services impose a challenge in determining appropriate bandwidth provision to satisfy the communication demands. This paper aims to address this challenge and develops a Communication Input-Output (CIO) model to capture data communication produced by Cloud services. The proposed model borrows the ideas from the Leontief’s Input-Output Model in economy. Based on the model, this paper develops a method to determine the bandwidth provision for individual VMs that host a service. We further develop a Communication-oriented Simulated Annealing (CSA) algorithm, which takes an initial VM-to-PM mapping as input and finds the mapping with the minimal bandwidth provision and without increasing the PM usage in the initial mapping. Experiments have been conducted to evaluate the effectiveness and efficiency of the CIO model and the CSA algorithm.


  1. 1.
    Amazon case study: Nasaq OMX.
  2. 2.
    Leontief, W.: Input-output analysis. New Palgrave Dictionary of Economics (1987)Google Scholar
  3. 3.
    Jalaparti, V., Ballani, H., Costa, P., Karagiannis, T., Rowstron, A.: Bridging the tenant-provider gap in cloud services. In: ACM SOCC (2012)Google Scholar
  4. 4.
    Meng, X., Pappas, V., Zhang, L.: Improving the scalability of data center networks with traffic-aware virtual machine placement. In: IEEE INFOCOM (2010)Google Scholar
  5. 5.
    Popa, L., Kumar, G., Chowdhury, M., Krishnam. A., Ratnas, S., Stoica, I.: Faircloud: sharing the network in cloud computing. In: ACM SIGCOMM (2012)Google Scholar
  6. 6.
    Ballani, H., Costa, P., Karagiannis, T., Rowstron, A.: Towards predictable datacenter networks. In: ACM SIGCOMM (2011)Google Scholar
  7. 7.
    Ballani, H., Jang, K., et al.: Chatty tenants and the cloud network sharing problem. In: Proceedings of NSDI2013 (2013)Google Scholar
  8. 8.
    Jiang, J.W., Lan, T., et al.: Joint VM placement and routing for data center traffic engineering. In: IEEE INFOCOM (2012)Google Scholar
  9. 9.
    Hermenier, F., Lorca, X., Menaud, J.-M., Muller, G., Lawall, J.: Entropy: a consolidation manager for clusters. In: 2009 ACM SIGPLAN/SIGOPS (2009)Google Scholar
  10. 10.
    Petrucci, V., et al.: A dynamic optimization model for power and performance management of virtualized clusters. In: Proceedings of e-Energy 2010 (2010)Google Scholar
  11. 11.
    He, L., Zou, D., et al.: Developing resource consolidation frameworks for moldable virtual machines in clouds. Future Gener. Comput. Syst. 32(1), 69–81 (2013)Google Scholar
  12. 12.
    Hu, L., Jin, H., Liao, X., Xiong, X., Liu, H.: Magnet: a novel scheduling policy for power reduction in cluster with virtual machines. In: Cluster (2008)Google Scholar
  13. 13.
    Chen, C., He, L., Chen, H., Sun, J., Gao, B., Jarvis, S.: Developing communication-aware service placement frameworks in the cloud economy. In: Cluster (2013)Google Scholar
  14. 14.
    Van Laarhoven, P.J., Aarts, E.H.: Simulated Annealing. Springer, Heidelberg (1987)CrossRefzbMATHGoogle Scholar
  15. 15.
    He, L., Jarvis, S.A., Spooner, D.P., Jiang, H., Dill, D.N., Nudd, G.R.: Allocating non-real-time and soft real-time jobs in multiclusters. In: TPDS (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Chao Chen
    • 1
  • Ligang He
    • 1
    • 2
    Email author
  • Bo Gao
    • 1
  • Cheng Chang
    • 2
  • Kenli Li
    • 2
  • Keqin Li
    • 2
    • 3
  1. 1.Department of Computer ScienceUniversity of WarwickCoventryUK
  2. 2.School of Computer Science and Electronic EngineeringHunan UniversityChangshaChina
  3. 3.Department of Computer ScienceState University of New YorkNew PaltzUSA

Personalised recommendations