In Situ X-Ray Reciprocal Space Mapping for Characterization of Nanomaterials



Definition of Topic

In this chapter, we will focus on the small-angle X-ray scattering (SAXS) technique performed on planar samples in the grazing-incidence small-angle X-ray scattering (GISAXS) geometry. This particular method of SAXS allows a fast, nondestructive analysis of the near-surface electron density variations on the lateral length scale ranging from several angstroms up to several hundreds of nanometers with adjustable in-depth sensitivity down to several nanometers. Special emphasis will be given to GISAXS experiments with laboratory X-ray sources as these are much more easily accessible as compared to synchrotron facilities.


The steadily growing research field of applied nanomaterials calls for development of advanced analytical methods for rapid and nondestructive structural characterization. A relatively simple grazing-incidence small-angle X-ray scattering (GISAXS) technique is an efficient analytical tool for structural studies of layered nanomaterials and self-assembled nanostructures. The feasibility to obtain statistically relevant parameters that characterize position correlations and size distributions in the surface or embedded nanoparticle assemblies or interface correlations in the layered nanostructures render the GISAXS technique a valuable complementary tool to the standard real-space investigation methods like transmission electron microscopy (TEM), scanning tunneling microscopy (STM), scanning electron microscopy (SEM), atomic force microscopy (AFM), etc. While a sophisticated sample preparation is often required for the real-space imaging techniques, the GISAXS has no special requirements. This technique is especially valuable for a real-time tracking of the nucleation and growth phases of nanomaterials preparation due to the long X-ray attenuation length in air and absence of special requirements for the experimental setup.

In this chapter, we will review applications of GISAXS for in situ studies of nanomaterial formation including the nucleation, agglomeration, self-assembly, and reassembly phenomena. Majority if not all in situ GISAXS experiments of nanomaterial formation have been performed at synchrotron facilities, taking the advantage of their high X-ray photon flux and low beam divergence. Only the advent of new micro-focusing X-ray sources coupled with high-performance reflective X-ray optics has allowed such GISAXS in situ experiments in a laboratory as will be demonstrated on several examples in this chapter.


Reciprocal Space Nanoparticle Layer High Photon Flux Nanoparticle Monolayer Lateral Correlation Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The work was supported by the Slovak Research and Development Agency, project no. APVV-0308-11; Grant Agency VEGA Bratislava, project no. 2/0004/15; and Centre of Excellence SAS FUNMAT. The support of the M-ERA-Net project XOPTICS and COST Actions MP1203 and MP1207 is also acknowledged.


  1. 1.
    Glatter O, Kratky O (1982) Small angle x-ray scattering. Academic, London/New YorkGoogle Scholar
  2. 2.
    Guinier A, Fournet G (1955) Small-angle scattering of X-rays. Wiley, New YorkGoogle Scholar
  3. 3.
    Feigin LA, Svergun DI, Taylor GW (1987) Structure analysis by small-angle X-ray and neutron scattering. Plenum Press, New YorkCrossRefGoogle Scholar
  4. 4.
    Brumberger H (1995) Modern aspects of small-angle scattering. Kluwer Academic Publishers, Dordrecht/BostonCrossRefGoogle Scholar
  5. 5.
    Renaud G, Lazzari R, Revenant C, Barbier A et al (2003) Real-time monitoring of growing nanoparticles. Science 300:1416CrossRefGoogle Scholar
  6. 6.
    Als-Nielsen J, MacMorrow D (2011) Elements of modern X-ray physics. Wiley, ChichesterCrossRefGoogle Scholar
  7. 7.
    Yoneda Y (1963) Anomalous surface reflection of X rays. Phys Rev 131:2010CrossRefGoogle Scholar
  8. 8.
    Holý V, Pietsch U, Baumbach T (1999) High-resolution X-ray scattering from thin films and multilayers. Springer, Berlin/New YorkGoogle Scholar
  9. 9.
    Holy V, Baumbach T (1994) Nonspecular X-ray reflection from rough multilayers. Phys Rev B 49:10668CrossRefGoogle Scholar
  10. 10.
    Holy V, Kubena J, Ohlidal I, Lischka K et al (1993) X-ray reflection from rough layered systems. Phys Rev B 47:15896CrossRefGoogle Scholar
  11. 11.
    Renaud G, Lazzari R, Leroy F (2009) Probing surface and interface morphology with grazing incidence small angle X-ray scattering. Surf Sci Rep 64:255CrossRefGoogle Scholar
  12. 12.
    Lazzari R (2002) IsGISAXS: a program for grazing-incidence small-angle X-ray scattering analysis of supported islands. J Appl Crystallogr 35:406CrossRefGoogle Scholar
  13. 13.
    Birkholz M, Fewster PF, Genzel C (2006) Thin film analysis by X-ray scattering. Wiley-VCH, WeinheimGoogle Scholar
  14. 14.
  15. 15.
  16. 16.
    Tate MP, Urade VN, Kowalski JD, Wei T-c et al (2006) Simulation and interpretation of 2D diffraction patterns from self-assembled nanostructured films at arbitrary angles of incidence: from grazing incidence (above the critical angle) to transmission perpendicular to the substrate. J Phys Chem B 110:9882CrossRefGoogle Scholar
  17. 17.
    Chourou ST, Sarje A, Li XS, Chan ER et al (2013) HipGISAXS: a high-performance computing code for simulating grazing-incidence X-ray scattering data. J Appl Crystallogr 46:1781CrossRefGoogle Scholar
  18. 18.
    Daillant J, Gibaud A (2009) X-ray and neutron reflectivity: principles and applications. Springer, Berlin/HeidelbergCrossRefGoogle Scholar
  19. 19.
    Bennett JM, Mattsson L (1989) Introduction to surface roughness and scattering. Optical Society of America, Washington, DCGoogle Scholar
  20. 20.
    Pelliccione M, Lu TM (2008) Evolution of thin film morphology: modeling and simulations. Springer, New York/LondonGoogle Scholar
  21. 21.
    Franceschetti G, Riccio D (2007) Scattering, natural surfaces, and fractals. Elsevier Academic Press, Amsterdam/BostonGoogle Scholar
  22. 22.
    Onuki H, Elleaume P (2003) Undulators, wigglers, and their applications. Taylor & Francis, London/New YorkCrossRefGoogle Scholar
  23. 23.
    Liu D-G, Chang C-H, Liu C-Y, Chang S-H et al (2009) A dedicated small-angle X-ray scattering beamline with a superconducting wiggler source at the NSRRC. J Synchrotron Radiat 16:97CrossRefGoogle Scholar
  24. 24.
    Döhrmann R, Botta S, Buffet A, Santoro G et al (2013) A new highly automated sputter equipment for in situ investigation of deposition processes with synchrotron radiation. Amsterdam 84:043901Google Scholar
  25. 25.
    Santoro G, Buffet A, Döhrmann R, Yu S et al (2014) Use of intermediate focus for grazing incidence small and wide angle x-ray scattering experiments at the beamline P03 of PETRA III, DESY. Rev Sci Instrum 85:043901CrossRefGoogle Scholar
  26. 26.
    Borsali R, Pecora R (2008) Soft-matter characterization. Springer, New YorkCrossRefGoogle Scholar
  27. 27.
    Zschornack G (2006) Handbook of X-ray data. Springer, New YorkGoogle Scholar
  28. 28.
    Otendal M, Tuohimaa T, Vogt U, Hertz HM (2008) A 9 keV electron-impact liquid-gallium-jet x-ray source. Rev Sci Instrum 79:016102CrossRefGoogle Scholar
  29. 29.
    Siffalovic P, Vegso K, Jergel M, Majkova E et al (2010) Measurement of nanopatterned surfaces by real and reciprocal space techniques. Meas Sci Rev 10:153CrossRefGoogle Scholar
  30. 30.
    Michaelsen C, Wiesmann J, Hoffmann C, Wulf K et al (2002) Recent developments of multilayer mirror optics for laboratory x-ray instrumentation. X-Ray Mirrors, Crystals, and Multilayers Ii 4782:143CrossRefGoogle Scholar
  31. 31.
    Wiesmann J, Graf J, Hoffmann C, Hembd A et al (2009) X-ray diffractometry with low power microfocus sources – new possibilities in the lab. Part Part Syst Charact 26:112CrossRefGoogle Scholar
  32. 32.
    Michaelsen C, Wiesmann J, Hoffmann C, Oehr A et al (2003) Optimized performance of graded multilayer optics for X-ray single crystal diffraction. Advances in Mirror Technology for X-Ray, Euv Lithography, Laser, and Other Applications 5193:211CrossRefGoogle Scholar
  33. 33.
    Hertlein F, Oehr A, Hoffmann C, Michaelsen C et al (2006) State-of-the-art of multilayer optics for laboratory X-ray devices. Part Part Syst Charact 22:378CrossRefGoogle Scholar
  34. 34.
    Hemberg O, Otendal M, Hertz HM (2003) Liquid-metal-jet anode electron-impact x-ray source. Appl Phys Lett 83:1483CrossRefGoogle Scholar
  35. 35.
    Hemberg O, Otendal M, Hertz HM (2004) Liquid-metal-jet anode X-ray tube. Opt Eng 43:1682CrossRefGoogle Scholar
  36. 36.
    De Caro L, Altamura D, Vittoria FA, Carbone G et al (2012) A superbright X-ray laboratory microsource empowered by a novel restoration algorithm. J Appl Crystallogr 45:1228CrossRefGoogle Scholar
  37. 37.
    De Caro L, Altamura D, Sibillano T, Siliqi D et al (2013) Rat-tail tendon fiber SAXS high-order diffraction peaks recovered by a superbright laboratory source and a novel restoration algorithm. J Appl Crystallogr 46:672CrossRefGoogle Scholar
  38. 38.
    He BB (2009) Two-dimensional x-ray diffraction. Wiley, HobokenCrossRefGoogle Scholar
  39. 39.
    Wignall GD, Lin JS, Spooner S (1990) Reduction of parasitic scattering in small-angle X-ray scattering by a three-pinhole collimating system. J Appl Crystallogr 23:241CrossRefGoogle Scholar
  40. 40.
    Li Y, Beck R, Huang T, Choi MC et al (2008) Scatterless hybrid metal-single-crystal slit for small-angle X-ray scattering and high-resolution X-ray diffraction. J Appl Crystallogr 41:1134CrossRefGoogle Scholar
  41. 41.
    Korytar D, Vagovic P, Vegso K, Siffalovic P et al (2013) Potential use of V-channel Ge(220) monochromators in X-ray metrology and imaging. J Appl Crystallogr 46:945CrossRefGoogle Scholar
  42. 42.
    Jergel M, Siffalovic P, Vegso K, Majkova E et al (2013) Extreme X-ray beam compression for a high-resolution table-top grazing-incidence small-angle X-ray scattering setup. J Appl Crystallogr 46:1544CrossRefGoogle Scholar
  43. 43.
    Schlepütz CM, Herger R, Willmott PR, Patterson BD et al (2005) Improved data acquisition in grazing-incidence X-ray scattering experiments using a pixel detector. Acta Crystallogr Sect A Found Crystallogr 61:418CrossRefGoogle Scholar
  44. 44.
    Kraft P, Bergamaschi A, Broennimann C, Dinapoli R et al (2009) Performance of single-photon-counting PILATUS detector modules. J Synchrotron Radiat 16:368CrossRefGoogle Scholar
  45. 45.
    Wernecke J, Gollwitzer C, Muller P, Krumrey M (2014) Characterization of an in-vacuum PILATUS 1M detector. J Synchrotron Radiat 21:529CrossRefGoogle Scholar
  46. 46.
    Chitu L, Siffalovic P, Majkova E, Jergel M et al (2010) Modified Langmuir-Blodgett deposition of nanoparticles – measurement of 2D to 3D ordered arrays. Meas Sci Rev 10:162CrossRefGoogle Scholar
  47. 47.
    Siffalovic P, Majkova E, Jergel M, Vegso K et al (2012) Self-assembly of nanoparticles at solid and liquid surfaces. In: Hashim A (ed) Smart nanoparticles technology. INTECH, Rijeka, pp 441–466Google Scholar
  48. 48.
    Sun SH, Murray CB, Weller D, Folks L et al (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287:1989CrossRefGoogle Scholar
  49. 49.
    Bigioni TP, Lin XM, Nguyen TT, Corwin EI et al (2006) Kinetically driven self assembly of highly ordered nanoparticle monolayers. Nat Mater 5:265CrossRefGoogle Scholar
  50. 50.
    Shevchenko EV, Talapin DV, Kotov NA, O'Brien S et al (2006) Structural diversity in binary nanoparticle superlattices. Nature 439:55CrossRefGoogle Scholar
  51. 51.
    Talapin DV, Shevchenko EV, Bodnarchuk MI, Ye X et al (2009) Quasicrystalline order in self-assembled binary nanoparticle superlattices. Nature 461:964CrossRefGoogle Scholar
  52. 52.
    Fan JA, Wu C, Bao K, Bao J et al (2010) Self-assembled plasmonic nanoparticle clusters. Science 328:1135CrossRefGoogle Scholar
  53. 53.
    Macfarlane RJ, Lee B, Jones MR, Harris N et al (2011) Nanoparticle superlattice engineering with DNA. Science 334:204CrossRefGoogle Scholar
  54. 54.
    Luby S, Chitu L, Jergel M, Majkova E et al (2012) Oxide nanoparticle arrays for sensors of CO and NO2 gases. Vacuum 86:590CrossRefGoogle Scholar
  55. 55.
    Herrmann J, Müller KH, Reda T, Baxter GR et al (2007) Nanoparticle films as sensitive strain gauges. Appl Phys Lett 91:183105CrossRefGoogle Scholar
  56. 56.
    Siffalovic P, Chitu L, Vegso K, Majkova E et al (2010) Towards strain gauges based on a self-assembled nanoparticle monolayer-SAXS study. Nanotechnology 21:385702CrossRefGoogle Scholar
  57. 57.
    Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102CrossRefGoogle Scholar
  58. 58.
    Santoro G, Yu S, Schwartzkopf M, Zhang P et al (2014) Silver substrates for surface enhanced Raman scattering: correlation between nanostructure and Raman scattering enhancement. Appl Phys Lett 104:243107CrossRefGoogle Scholar
  59. 59.
    Capek I (2004) Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions. Adv Colloid Interface Sci 110:49CrossRefGoogle Scholar
  60. 60.
    Siffalovic P, Majkova E, Chitu L, Jergel M et al (2007) Self-assembly of iron oxide nanoparticles studied by time-resolved grazing-incidence small-angle x-ray scattering. Phys Rev B 76:195432CrossRefGoogle Scholar
  61. 61.
    Siffalovic P, Majkova E, Chitu L, Jergel M et al (2008) Real-time tracking of superparamagnetic nanoparticle self-assembly. Small 4:2222CrossRefGoogle Scholar
  62. 62.
    Vegso K, Siffalovic P, Majkova E, Jergel M et al (2012) Nonequilibrium phases of nanoparticle Langmuir films. Langmuir 28:10409CrossRefGoogle Scholar
  63. 63.
    Vegso K, Siffalovic P, Benkovicova M, Jergel M et al (2012) GISAXS analysis of 3D nanoparticle assemblies-effect of vertical nanoparticle ordering. Nanotechnology 23:045704CrossRefGoogle Scholar
  64. 64.
    Vegso K, Siffalovic P, Jergel M, Weis M et al (2014) A non-equilibrium transient phase revealed by in situ GISAXS tracking of the solvent-assisted nanoparticle self-assembly. J Nanopart Res 16:2536CrossRefGoogle Scholar
  65. 65.
    Eads JL, Millane RP (2001) Diffraction by the ideal paracrystal. Acta Crystallogr A 57:507CrossRefGoogle Scholar
  66. 66.
    Capone S, Manera MG, Taurino A, Siciliano P et al (2014) Fe3O4/γ-Fe2O3 nanoparticle multilayers deposited by the Langmuir–Blodgett technique for gas sensors application. Langmuir 30:1190CrossRefGoogle Scholar
  67. 67.
    Siffalovic P, Vegso K, Benkovicova M, Jergel M et al (2014) Reassembly and oxidation of a silver nanoparticle bilayer probed by in situ X-ray reciprocal space mapping. J Phys Chem C 118:7195CrossRefGoogle Scholar
  68. 68.
    Hirota E, Sakakima H, Inomata K (eds) (2002) Giant magneto-resistance devices. Springer, Berlin/HeidelbergGoogle Scholar
  69. 69.
    Spiller E (1994) Soft X-ray optics. SPIE Optical Engineering Press, BellinghamCrossRefGoogle Scholar
  70. 70.
    Venables J (2000) Introduction to surface and thin film processes. Cambridge University Press, Cambridge; New YorkCrossRefGoogle Scholar
  71. 71.
    Lüth H (2010) Solid surfaces, interfaces and thin films. Springer, Heidelberg/New YorkCrossRefGoogle Scholar
  72. 72.
    Freund LB, Suresh S (2009) Thin film materials: stress, defect formation, and surface evolution. Cambridge University Press, Cambridge/New YorkGoogle Scholar
  73. 73.
    Ohring M (2001) Materials science of thin films. Elsevier Science, SingaporeGoogle Scholar
  74. 74.
    Barabási A-L, Stanley HE (1995) Fractal concepts in surface growth. Press Syndicate of the University of Cambridge, New YorkCrossRefGoogle Scholar
  75. 75.
    Renaud G, Ducruet M, Ulrich O, Lazzari R (2004) Apparatus for real time in situ quantitative studies of growing nanoparticles by grazing incidence small angle X-ray scattering and surface differential reflectance spectroscopy. Nucl Inst Methods Phys Res B 222:667CrossRefGoogle Scholar
  76. 76.
    Hodas M 2015 doi:10.1117/12.2187999
  77. 77.
    Schwartzkopf M, Buffet A, Korstgens V, Metwalli E et al (2013) From atoms to layers: in situ gold cluster growth kinetics during sputter deposition. Nanoscale 5:5053CrossRefGoogle Scholar
  78. 78.
    Siffalovic P, Jergel M, Majkova E (2011) GISAXS – probe of buried interfaces in multilayered thin films. In: Bauwens CM (ed) X-ray scattering. Nova Science Publishers, New York, pp 1–54Google Scholar
  79. 79.
    Stearns DG (1992) X-ray-scattering from interfacial roughness in multilayer structures. J Appl Phys 71:4286CrossRefGoogle Scholar
  80. 80.
    Salditt T, Lott D, Metzger TH, Peisl J et al (1996) Observation of the Huygens-principle growth mechanism in sputtered W/Si multilayers. Europhys Lett 36:565CrossRefGoogle Scholar
  81. 81.
    Salditt T, Metzger TH, Peisl J, Reinker B et al (1995) Determination of the height-height correlation-function of rough surfaces from diffuse-X-ray scattering. Europhys Lett 32:331CrossRefGoogle Scholar
  82. 82.
    Salditt T, Lott D, Metzger TH, Peisl J et al (1996) Characterization of interface roughness in W/Si multilayers by high resolution diffuse X-ray scattering. Phys B Condens Matter 221:13CrossRefGoogle Scholar
  83. 83.
    Salditt T, Metzger TH, Brandt C, Klemradt U et al (1995) Determination of the static scaling exponent of self-affine interfaces by nonspecular X-ray-scattering. Phys Rev B 51:5617CrossRefGoogle Scholar
  84. 84.
    Salditt T, Metzger TH, Peisl J (1994) Kinetic roughness of amorphous multilayers studied by diffuse-X-ray scattering. Phys Rev Lett 73:2228CrossRefGoogle Scholar
  85. 85.
    Siffalovic P, Majkova E, Chitu L, Jergel M et al (2009) Characterization of Mo/Si soft X-ray multilayer mirrors by grazing-incidence small-angle X-ray scattering. Vacuum 84:19CrossRefGoogle Scholar
  86. 86.
    Sinha SK, Sirota EB, Garoff S, Stanley HB (1988) X-ray and neutron-scattering from rough surfaces. Phys Rev B 38:2297CrossRefGoogle Scholar
  87. 87.
    Edwards SF, Wilkinson DR (1982) The surface statistics of a granular aggregate. Proc R Soc A 381:17CrossRefGoogle Scholar
  88. 88.
    Siffalovic P, Jergel M, Chitu L, Majkova E et al (2010) Interface study of a high-performance W/B4C X-ray mirror. J Appl Crystallogr 43:1431CrossRefGoogle Scholar
  89. 89.
    Wu W-R, Jeng US, Su C-J, Wei K-H et al (2011) Competition between fullerene aggregation and poly(3-hexylthiophene) crystallization upon annealing of bulk heterojunction solar cells. ACS Nano 5:6233CrossRefGoogle Scholar
  90. 90.
    Li G, Yao Y, Yang H, Shrotriya V et al (2007) “Solvent annealing” effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes. Adv Funct Mater 17:1636CrossRefGoogle Scholar
  91. 91.
    Ziberi B, Cornejo M, Frost F, Rauschenbach B (2009) Highly ordered nanopatterns on Ge and Si surfaces by ion beam sputtering. J Phys Condens Matter 21:224003CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute of PhysicsSlovak Academy of SciencesBratislavaSlovakia
  2. 2.Institute of Electrical EngineeringSlovak Academy of SciencesBratislavaSlovakia

Personalised recommendations