Game Theoretical Semantics for Paraconsistent Logics

  • Can Başkent
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9394)


Game theoretical semantics suggests a very intuitive approach to formal semantics. The semantic verification game for classical logic is played by two players, verifier and falsifier who we call Heloise and Abelard respectively. The goal of Heloise in the game is to verify the truth of a given formula in a given model whereas for Abelard it is to falsify it. The rules are specified syntactically based on the form of the formula. During the game, the given formula is broken into subformulas step by step by the players. The game terminates when it reaches the propositional literals and when there is no move to make.


Induction Hypothesis Modal Logic Classical Logic Truth Table Winning Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, A.R., Belnap, N.D.: First degree entailments. Mathematische Annalen 149, 302–319 (1963)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Belnap, N.D., Stell, T.B.: The Logic of Questions and Answers. Yale University Press (1976)Google Scholar
  3. 3.
    Boyer, J., Sandu, G.: Between proof and truth. Synthese 187, 821–832 (2012)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    da Costa, N.C.A.: On the theory of inconsistent formal systems. Notre Dame Journal of Formal Logic 15(4), 497–510 (1974)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    da Costa, N.C.A., Krause, D., Bueno, O.: Paraconsistent logics and paraconsistency. In: Jacquette, D. (ed.) Philosophy of Logic, vol. 5, pp. 655–781. Elsevier (2007)Google Scholar
  6. 6.
    Michael Dunn, J.: Intuitive semantics for first-degree entailments and ‘coupled trees’. Philosophical Studies 29(3), 149–168 (1976)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Hintikka, J.: The Principles of Mathematics Revisited. Cambridge University Press (1996)Google Scholar
  8. 8.
    Hintikka, J., Sandu, G.: Information independence as a semantical phenomenon. In: Fenstad, J.E., Frolov, I.T., Hilpinen, R. (eds.) Logic, Methodology and Philosophy of Science VIII, pp. 571–589. Elsevier (1989)Google Scholar
  9. 9.
    Hintikka, J., Sandu, G.: Game-theoretical semantics. In: van Benthem, J., ter Meulen, A. (eds.) Handbook of Logic and Language, pp. 361–410. Elsevier (1997)Google Scholar
  10. 10.
    Kooi, B., Tamminga, A.: Three-valued logics in modal logic. Studia Logica 101(5), 1061–1072 (2013)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Mann, A.L., Sandu, G., Sevenster, M.: Independence-Friendly Logic. Cambridge University Press (2011)Google Scholar
  12. 12.
    Parikh, R.: D structures and their semantics. In: Gerbrandy, J., Marx, M., de Rijke, M., Venema, Y. (eds.) JFAK. UvA (1999),
  13. 13.
    Pietarinen, A.: Logic and coherence in the light of competitive games. Logique et Analyse 43, 371–391 (2000)MathSciNetMATHGoogle Scholar
  14. 14.
    Pietarinen, A., Sandu, G.: Games in philosophical logic. Nordic Journal of Philosophical Logic 4(2), 143–173 (2000)MathSciNetMATHGoogle Scholar
  15. 15.
    Pietarinen, A.-V.: Games as formal tools versus games as explanations in logic and science. Foundations of Science 8(4), 317–364 (2003)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Pietarinen, A.-V.: Semantic games in logic and epistemology. In: Rahman, S., Gabbay, D., van Bendegem, J.P. (eds.) Logic, Epistemology, and the Unity of Science, pp. 57–103. Kluwer (2004)Google Scholar
  17. 17.
    Priest, G.: The logic of paradox. Journal of Philosophical Logic 8, 219–241 (1979)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Priest, G.: Paraconsistent logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. 6, pp. 287–393. Kluwer (2002)Google Scholar
  19. 19.
    Priest, G.: Paraconsistency and dialetheism. In: Gabbay, D.M., Woods, J. (eds.) Handbook of History of Logic, 1st edn., vol. 8, pp. 129–204. Elsevier (2007)Google Scholar
  20. 20.
    Priest, G.: An Introdiction to Non-Classical Logic. Cambridge University Press (2008)Google Scholar
  21. 21.
    Ranta, A.: Propositions as games as types. Synthese 76(3), 377–395 (1988)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Routley, R., Routley, V.: The semantics of first degree entailment. Noûs 6(4), 335–359 (1972)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Sandu, G., Pietarinen, A.: Partiality and games: Propositional logic. Logic Journal of the IGPL 9(1), 107–127 (2001)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Schotch, P., Brown, B., Jennings, R.: On Preserving: Essays on Preservationism and Paraconsistent Logic. University of Toronto Press (2009)Google Scholar
  25. 25.
    Tennant, N.: Games some people would have all of us play. Philosophia Mathematica 6(3), 90–115 (1998)CrossRefGoogle Scholar
  26. 26.
    Tulenheimo, T.: Classical negation and game-theoretical semantics. Notre Dame Journal of Formal Logic 55(4), 469–498 (2014)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of BathBathEngland

Personalised recommendations