Introspection, Normality and Agglomeration

  • Dominik Klein
  • Norbert Gratzl
  • Olivier Roy
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9394)


This paper explores a non-normal logic of beliefs for boundedly rational agents. The logic we study stems from the epistemic-doxastic system developed by Stalnaker [1]. In that system, if knowledge is not positively introspective then beliefs are not closed under conjunction. They are, however, required to be pairwise consistent, a requirement that has been called agglomerativity elsewhere. While bounded agglomerativity requirements, i.e., joint consistency for every n-tuple of beliefs up to a fixed n, are expressible in that logic, unbounded agglomerativity is not. We study an extension of this logic of beliefs with such an unbounded agglomerativity operator, provide a sound and complete axiomatization for it, show that it has a sequent calculus that enjoys the admissibility of cut, that it has the finite model property, and that it is decidable.


Belief Revision Rationality Requirement Proof Theory Sequent Calculus Neighborhood Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stalnaker, R.: On logics of knowledge and belief. Philosophical Studies 128, 169–199 (2006)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Baltag, A., Bezhanishvili, N., Özgün, A., Smets, S.: The topology of belief, belief revision and defeasible knowledge. In: Grossi, D., Roy, O., Huang, H. (eds.) LORI. LNCS, vol. 8196, pp. 27–40. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. 3.
    Özgün, A.: Topological models for belief and belief revision. Master’s thesis, Universiteit van Amsterdam (2013)Google Scholar
  4. 4.
    Williamson, T.: Knowledge and its Limits. Oxford UP (2000)Google Scholar
  5. 5.
    Chellas, B.F.: Modal Logic: An Introduction. Cambridge University Press (1980)Google Scholar
  6. 6.
    Pacuit, E.: Neighborhood semantics for modal logic. Course Notes (2007)Google Scholar
  7. 7.
    Leitgeb, H.: The stability theory of belief. Philosophical Review 123, 131–171 (2014)CrossRefGoogle Scholar
  8. 8.
    Harman, G.: Change in view: Principles of reasoning. MIT Press (1986)Google Scholar
  9. 9.
    Shoham, Y.: Logical theories of intention and the database perspective. Journal of Philosophical Logic 38, 633–647 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Roy, O.: Interpersonal coordination and epistemic support for intentions with we-content. Economics and Philosophy 26, 345–367 (2010)CrossRefGoogle Scholar
  11. 11.
    Buss, S.: An Introduction to Proof Theory. In: Buss, S. (ed.) Handbook of Proof Theory, pp. 1–78. Elsevier (1998)Google Scholar
  12. 12.
    Negri, S., von Plato, J.: Structural Proof Theory. Cambridge Universtiy Press (2001)Google Scholar
  13. 13.
    Gentzen, G.: Untersuchungen über das logische Schließen. Mathematische Zeitschrift 39, 176–210, 405–431 (1934-1935)Google Scholar
  14. 14.
    Ono, H., et al.: Proof-theoretic methods in nonclassical logic; an introduction. Theories of Types and Proofs 2, 207–254 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Leitgeb, H.: Reducing belief simpliciter to degrees of belief. Annals of Pure and Applied Logic 164, 1338–1389 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Ma, M., Sano, K.: How to update neighborhood models. In: Grossi, D., Roy, O., Huang, H. (eds.) LORI. LNCS, vol. 8196, pp. 204–217. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Dominik Klein
    • 1
    • 3
  • Norbert Gratzl
    • 2
  • Olivier Roy
    • 1
  1. 1.University of BayreuthBayreuthGermany
  2. 2.LMU MunichMunichGermany
  3. 3.University of BambergBambergGermany

Personalised recommendations