Advertisement

Locally Linear Embedding Based Dynamic Texture Synthesis

  • Weigang Guo
  • Xinge You
  • Ziqi Zhu
  • Yi Mou
  • Dachuan Zheng
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 546)

Abstract

Dynamic textures are often modeled as a low-dimensional dynamic process. The process usually comprises an appearance model of dimension reduction, a Markovian dynamic model in latent space to synthesize consecutive new latent variables and a observation model to map new latent variables onto the observation space. Linear dynamic system(LDS) is effective in modeling simple dynamic scenes while is hard to capture the nonlinearities of video sequences, which often results in poor visual quality of the synthesized videos. In this paper,we propose a new framework for generating dynamic textures by using a new appearance model and a new observation model to preserves the non-linear correlation of video sequences. We use locally linear embedding(LLE) to create an manifold embedding of the input sequence, apply a Markovian dynamics to maintain the temporal coherence in the latent space and synthesize new manifold, and develop a novel neighbor embedding based method to reconstruct the new manifold into the image space to constitute new texture videos. Experiments show that our method is efficient in capturing complex appearance variation while maintaining the temporal coherence of the new synthesized texture videos.

Keywords

Dynamic texture synthesis Dynamic system Locally linear embedding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Soatto, S., Doretto, G., Wu, Y.N.: Dynamic textures. In: 2001 Proceedings of the Eighth IEEE International Conference on Computer Vision, ICCV 2001, vol. 2, pp. 439–446. IEEE (2001)Google Scholar
  2. 2.
    Wang, J., Hertzmann, A., Blei, D.M.: Gaussian process dynamical models. In: Advances in Neural Information Processing Systems, pp. 1441–1448 (2005)Google Scholar
  3. 3.
    Rahimi, A., Darrell, T., Recht, B.: Learning appearance manifolds from video. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 868–875. IEEE (2005)Google Scholar
  4. 4.
    Lin, R.-S., Liu, C.-B., Yang, M.-H., Ahuja, N., Levinson, S.E.: Learning nonlinear manifolds from time series. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 245–256. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  5. 5.
    Doretto, G., Chiuso, A., Wu, Y.N., Soatto, S.: Dynamic textures. International Journal of Computer Vision 51(2), 91–109 (2003)CrossRefzbMATHGoogle Scholar
  6. 6.
    Yuan, L., Wen, F., Liu, C., Shum, H.-Y.: Synthesizing dynamic texture with closed-loop linear dynamic system. In: Pajdla, T., Matas, J. (George) (eds.) ECCV 2004. LNCS, vol. 3022, pp. 603–616. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  7. 7.
    Liu, C.B., Lin, R., Ahuja, N.: Modeling dynamic textures using subspace mixtures. In: 2005 IEEE International Conference on Multimedia and Expo, ICME 2005, pp. 1378–1381. IEEE (2005)Google Scholar
  8. 8.
    Teh, Y.W., Roweis, S.T.: Automatic alignment of local representations. In: Advances in Neural Information Processing Systems, pp. 841–848 (2002)Google Scholar
  9. 9.
    Costantini, R., Sbaiz, L., Susstrunk, S.: Higher order svd analysis for dynamic texture synthesis. IEEE Transactions on Image Processing 17(1), 42–52 (2008)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Awasthi, I., Elgammal, A.: Learning nonlinear manifolds of dynamic textures. In: Advances in Computer Graphics and Computer Vision, pp. 395–405. Springer (2007)Google Scholar
  11. 11.
    Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)CrossRefGoogle Scholar
  12. 12.
    Chang, H., Yeung, D.Y., Xiong, Y.: Super-resolution through neighbor embedding. In: 2004 Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2004, vol. 1, pp. I-I. IEEE (2004)Google Scholar
  13. 13.
    Péteri, R., Fazekas, S., Huiskes, M.J.: Dyntex: A comprehensive database of dynamic textures. Pattern Recognition Letters 31(12), 1627–1632 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Weigang Guo
    • 1
  • Xinge You
    • 1
  • Ziqi Zhu
    • 1
  • Yi Mou
    • 1
  • Dachuan Zheng
    • 1
  1. 1.School of Electronics and Information EngineeringHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations