Advertisement

SDM Principles

  • Deren Li
  • Shuliang Wang
  • Deyi Li
Chapter

Abstract

The spatial data mining (SDM) method is a discovery process of extracting generalized knowledge from massive spatial data, which builds a pyramid from attribute space and feature space to concept space. SDM is an interdisciplinary subject and is therefore related to, but different from, other subjects. Its basic concepts are presented in this chapter, which include manipulating space, SDM view, discovered knowledge, and knowledge representation.

Keywords

Spatial Information Association Rule Spatial Data Spatial Database Spatial Knowledge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Agrawal R, Srikant R (1994) Fast algorithms for mining association rules. In: Proceedings of international conference on very large databases (VLDB), Santiago, Chile, pp 487–499Google Scholar
  2. Barnett V (1978) Outliers in statistical data. Wiley, New YorkzbMATHGoogle Scholar
  3. Barrabbasi AL, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512MathSciNetCrossRefzbMATHGoogle Scholar
  4. Di KC (2001) Spatial data mining and knowledge discovering. Wuhan University Press, WuHanGoogle Scholar
  5. Ester M et al (2000) Spatial data mining: databases primitives, algorithms and efficient DBMS support. Data Min Knowl Disc 4:193–216CrossRefGoogle Scholar
  6. Frasconi P, Gori M, Soda G (1999) Data categorization using decision trellises. IEEE Trans Knowl Data Eng 11(5):697–712CrossRefGoogle Scholar
  7. Grabmeier J, Rudolph A (2002) Techniques of clustering algorithms in data mining. Data Min Knowl Disc 6:303–360MathSciNetCrossRefGoogle Scholar
  8. Han JW, Kamber M, Pei J (2012) Data mining: concepts and techniques, 3rd edn. Morgan Kaufmann Publishers Inc., BurlingtonzbMATHGoogle Scholar
  9. Hawkins D (1980) Identifications of outliers. Chapman and Hall, LondonCrossRefzbMATHGoogle Scholar
  10. Hodge VJ, Austin J (2004) A survey of outlier detection methodologies. Artif Intell Rev 22(2):85–126CrossRefzbMATHGoogle Scholar
  11. Koperski K (1999) A progressive refinement approach to spatial data mining. Ph.D. thesis, Simon Fraser University, British ColumbiaGoogle Scholar
  12. Lee ES (2000) Neuro-fuzzy estimation in spatial statistics. J Math Anal Appl 249:221–231CrossRefzbMATHGoogle Scholar
  13. Li DR, Guan ZQ (2000) Integration and Implementation of spatial information system. Wuhan University Press, WuhanGoogle Scholar
  14. Li DR, Wang SL, Shi WZ, Wang XZ (2001) On spatial data mining and knowledge discovery (SDMKD). Geomatics Inf Sci Wuhan Univ 26(6):491–499Google Scholar
  15. Li DR, Wang SL, Li DY (2006) Theory and application of spatial data mining, 1st edn. Science Press, BeijingGoogle Scholar
  16. Li DR, Wang SL, Li DY (2013) Theory and application of spatial data mining, 2nd edn. Science Press, BeijingGoogle Scholar
  17. Li DY, Du Y (2007) Artificial intelligence with uncertainty. Chapman and Hall/CRC, LondonGoogle Scholar
  18. Liu B (2007) Web data mining: exploring hyperlinks, contents, usage data, 2nd edn. Springer, HeidelbergzbMATHGoogle Scholar
  19. Piatetsky-shapiro G (1994) An overview of knowledge discovery in databases: recent progress and challenges. In: Ziarko Wojciech P (ed) Rough sets, fuzzy sets and knowledge discovery. Springer, Berlin, pp 1–10CrossRefGoogle Scholar
  20. Ramaswamy S, Rastogi R, Shim K (2000) Efficient algorithms for mining outliers from large data sets. In: Proceeding SIGMOD ‘00 proceedings of the 2000 ACM SIGMOD international conference on management of data, pp 427–438Google Scholar
  21. Reshef DN et al (2011) Detecting novel associations in large data sets. Science 334:1518CrossRefGoogle Scholar
  22. Shekhar S, Lu CT, Zhang P (2003) A unified approach to detecting spatial outliers. GeoInformatica 7(2):139–166CrossRefGoogle Scholar
  23. Srivastava J, Cheng PY (1999) Warehouse creation-a potential roadblock to data warehousing. IEEE Trans Knowl Data Eng 11(1):118–126CrossRefGoogle Scholar
  24. Wang SL (2002) Data field and cloud model based spatial data mining and knowledge discovery, PhD thesis, Wuhan University, WuhanGoogle Scholar
  25. Wang SL, Shi WZ (2012) Data mining and knowledge discovery. In: Kresse Wolfgang, Danko David (eds) Handbook of geographic information. Springer, BerlinGoogle Scholar
  26. Wang SL, Yuan HN (2014) Spatial data mining: a perspective of big data. Int J Data Warehouse Min 10(4):50–70CrossRefGoogle Scholar
  27. Wang SL, Gan WY, Li DY, Li DR (2011) Data field for hierarchical clustering. Int J Data Warehouse Min 7(4):43–63CrossRefGoogle Scholar
  28. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small world’ networks. Nature 393:400–442CrossRefGoogle Scholar
  29. Witten I, Frank E (2000) Data mining, practical machine learning tools and techniques with java implementation. San Francisca: Morgan Kaufman PublishersGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Wuhan UniversityWuhanChina
  2. 2.Beijing Institute of TechnologyBeijingChina
  3. 3.Tsinghua UniversityBeijingChina

Personalised recommendations