DNA Markers in Solanaceae Breeding

Chapter
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 70)

Abstract

In solanaceous crops, such as tomato, potato, pepper, and eggplant, continuous efforts to develop DNA markers and to construct linkage maps have been made by a number of researchers since the 1980s. The earliest such attempts were based on restriction fragment length polymorphisms, followed by PCR-based DNA markers (random amplified polymorphic DNA and amplified fragment length polymorphisms). More sophisticated sequence-tagged technologies such as simple sequence repeats and single nucleotide polymorphisms have enabled interspecific comparative analysis of linkage maps and related genomic information among solanaceous species. Biparental genetic analysis using DNA marker linkage maps provided useful information for developing selectable markers for practical breeding, especially for traits (such as vertical disease resistance) controlled by a single gene or a few major genes. For more complex traits (such as yield and fruit quality), map-based quantitative trait locus analysis has become a standard method for developing selectable markers, but it remains difficult to apply this technology to practical breeding. Marker-assisted genetic analysis and breeding by using comprehensive genome-wide information (genome-wide association studies and genomic selection) are expected to be a breakthrough in the improvement of agronomically important quantitative traits in these solanaceous crops.

References

  1. Agrama HA, Scott JW (2006) Quantitative trait loci for Tomato yellow leaf curl virus and tomato mottle virus resistance in tomato. J Am Soc Hortic Sci 131:267–272Google Scholar
  2. Arnedo-Andrés MS, Gil-Ortega R, Luis-Arteaga M, Hormaza JI (2002) Development of RAPD and SCAR markers linked to the Pvr4 locus for resistance to PVY in pepper (Capsicum annuum L.). Theor Appl Genet 105:1067–1074CrossRefPubMedGoogle Scholar
  3. Ashrafi H, Hill T, Stoffel K, Kozik A, Yao J, Chin-Wo SR, Van Deynze A (2012) De novo assembly of the pepper transcriptome (Capsicum annuum): a benchmark for in silico discovery of SNPs, SSRs and candidate genes. BMC Genomics 13:571CrossRefPubMedPubMedCentralGoogle Scholar
  4. Barchi L, Lanteri S, Portis E, Acquadro A, Valè G, Toppino L, Rotino GL (2011) Identification of SNP and SSR markers in eggplant using RAD tag sequencing. BMC Genomics 12:304CrossRefPubMedPubMedCentralGoogle Scholar
  5. Barchi L, Lanteri S, Portis E, Valè G, Volante A et al (2012) A RAD tag derived marker based eggplant linkage map and the location of QTLs determining anthocyanin pigmentation. PLoS One 7:e43740. doi: 10.1371/journal.pone.0043740 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Behare J, Laterrot H, Sarfatti M, Zamir D (1991) Restriction fragment length polymorphism mapping of the Stemphylium resistance gene in tomato. Mol Plant Microbe Interact 4:489–492CrossRefGoogle Scholar
  7. Blum E, Mazourek M, O’Connell M, Curry J, Thorup T, Liu K, Jahn M, Paran I (2003) Molecular mapping of capsaicinoid biosynthesis genes and quantitative trait loci analysis for capsaicinoid content in Capsicum. Theor Appl Genet 108:79–86CrossRefPubMedGoogle Scholar
  8. Brommonschenkel S, Tanksley S (1997) Map-based cloning of the tomato genomic region that spans the Sw-5 tospovirus resistance gene in tomato. Mol Gen Genet 256:121–126CrossRefPubMedGoogle Scholar
  9. Chagué V, Mercier JC, Guénard M, Courcel AD, Vedel F (1997) Identification of RAPD markers linked to a locus involved in quantitative resistance to TYLCV in tomato by bulked segregant analysis. Theor Appl Genet 95:671–677CrossRefGoogle Scholar
  10. Dax E, Livneh O, Edelbaum O, Kedar N, Gavish N, Karchi H, Milo J, Sela I, Rabinowitch HD (1994) A random amplified polymorphic DNA (RAPD) molecular marker for the Tm-2 a gene in tomato. Euphytica 74:159–163CrossRefGoogle Scholar
  11. Dickinson MJ, Jones DA, Jones JD (1993) Close linkage between the Cf-2/Cf-5 and Mi resistance loci in tomato. Mol Plant Microbe Interact 6:341–347CrossRefPubMedGoogle Scholar
  12. Diwan N, Fluhr R, Eshed Y, Zamir D, Tanksley SD (1999) Mapping of Ve in tomato: a gene conferring resistance to the broad-spectrum pathogen, Verticillium dahliae race 1. Theor Appl Genet 98:315–319CrossRefGoogle Scholar
  13. Doganlar S, Frary A, Daunay MC, Lester RN, Tanksley SD (2002) A comparative genetic linkage map of eggplant (Solanum melongena) and its implications for genome evolution in the Solanaceae. Genetics 161:1697–1711PubMedPubMedCentralGoogle Scholar
  14. Ebana K, Shibaya T, Wu J, Matsubara K, Kanamori H et al (2011) Uncovering of major genetic factors generating naturally occurring variation in heading date among Asian rice cultivars. Theor Appl Genet 122:1199–1210CrossRefPubMedPubMedCentralGoogle Scholar
  15. Foolad MR (2007) Genome mapping and molecular breeding of tomato. Intl J Plant Genomics 2007: Article ID 64358 doi:10.1155/2007/64358Google Scholar
  16. Foolad MR, Panthee DR (2012) Marker-assisted selection in tomato breeding. Crit Rev Plant Sci 31:93–123CrossRefGoogle Scholar
  17. Fradin EF, Zhang Z, Juarez-Ayala JC, Castroverde CDM, Nazar RN, Robb J, Liu CM, Thomma BPHJ (2009) Genetic dissection of Verticillium wilt resistance mediated by tomato Ve1. Plant Physiol 150:320–332CrossRefPubMedPubMedCentralGoogle Scholar
  18. Fridman E, Pleban T, Zamir D (2000) A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proc Natl Acad Sci U S A 97:4718–4723CrossRefPubMedPubMedCentralGoogle Scholar
  19. Fukuoka H, Miyatake K, Negoro S, Nunome T, Ohyama A, Yamaguchi H (2008) Development of a routine procedure for single nucleotide polymorphism marker design based on the Tm-shift genotyping method. Breed Sci 58:461–464CrossRefGoogle Scholar
  20. Fukuoka H, Miyatake K, Nunome T, Negoro S, Shirasawa K, Isobe S, Asamizu E, Yamaguchi H, Ohyama A (2012) Development of gene-based markers and construction of an integrated linkage map in eggplant by using Solanum orthologous (SOL) gene sets. Theor Appl Genet 125:47–56CrossRefPubMedGoogle Scholar
  21. Fulton TM, Van der Hoeven R, Eannetta NT, Tanksley SD (2002) Identification, analysis, and utilization of conserved ortholog set markers for comparative genomics in higher plants. Plant Cell 14:1457–1467CrossRefPubMedPubMedCentralGoogle Scholar
  22. Haanstra JPW, Wye C, Verbakel H, Meijer-Dekens F, van den Berg P, Odinot P, van Heusden AW, Tanksley S, Lindhout P, Peleman J (1999) An integrated high-density RFLP-AFLP map of tomato based on two Lycopersicon esculentum × L. pennellii F2 populations. Theor Appl Genet 99:254–271CrossRefGoogle Scholar
  23. Hamblin MT, Buckler ES, Jannink JL (2011) Population genetics of genomics-based crop improvement methods. Trends Genet 27:98–106CrossRefPubMedGoogle Scholar
  24. Hamilton JP, Sim S, Stoffel K, van Deynze A, Buell GR, Francis D (2012) Single nucleotide polymorphism discovery in cultivated tomato via sequencing by synthesis. Plant Genome 5:17–29CrossRefGoogle Scholar
  25. Hayes J, Bowman PJ, Chamberlain AJ, Goddard ME (2009) Invited review: genomic selection in dairy cattle: progress and challenges. J Dairy Sci 92:433–443CrossRefPubMedGoogle Scholar
  26. Heffner EL, Sorrells ME, Jannink JL (2009) Genomic selection for crop improvement. Crop Sci 49:1–12CrossRefGoogle Scholar
  27. Helentjaris T, Slocum M, Wright S, Schaefer A, Nienhuis J (1986) Construction of genetic linkage maps in maize and tomato using restriction fragment length polymorphisms. Theor Appl Genet 72:761–769CrossRefPubMedGoogle Scholar
  28. Iwata H, Hayashi T, Tsumura Y (2011) Prospects for genomic selection in conifer breeding: a simulation study of Cryptomeria japonica. Tree Genet Genomes 7:747–758CrossRefGoogle Scholar
  29. Iwata H, Hayashi T, Terakami S, Takada N, Sawamura Y, Yamamoto T (2013) Potential assessment of genome-wide association study and genomic selection in Japanese pear Pyrus pyrifolia. Breed Sci 63:125–140CrossRefPubMedPubMedCentralGoogle Scholar
  30. Jahn M, Paran I, Hoffmann K, Radwanski ER, Livingstone KD, Grube RC, Aftergoot E, Lapidot M, Moyer J (2000) Genetic mapping of the Tsw locus for resistance to the Tospovirus Tomato spotted wilt virus in Capsicum spp. and its relationship to the Sw-5 gene for resistance to the same pathogen in tomato. Mol Plant Microbe Interact 13:673–689CrossRefPubMedGoogle Scholar
  31. Jannink JL, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: from theory to practice. Brief Funct Genomics 9:166–177CrossRefPubMedGoogle Scholar
  32. Jones DA, Thomas CM, Hammond-Kosack KE, Balint-Kurti PJ, Jones JD (1994) Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science 266:789–793CrossRefPubMedGoogle Scholar
  33. Kang BC, Yeam I, Frantz JD, Murphy JF, Jahn MM (2005) The pvr1 locus in Capsicum encodes a translation initiation factor eIF4E that interacts with Tobacco etch virus VPg. Plant J 42:392–405CrossRefPubMedGoogle Scholar
  34. Kang WH, Hoang NH, Yang HB, Kwon JK, Jo SH, Seo JK, Kim KH, Choi D, Kang BC (2010) Molecular mapping and characterization of a single dominant gene controlling CMV resistance in peppers (Capsicum annuum L.). Theor Appl Genet 120:1587–1596CrossRefPubMedGoogle Scholar
  35. Kawchuk LM, Hachey J, Lynch DR (1998) Development of sequence characterized DNA markers linked to a dominant Verticillium wilt resistance gene in tomato. Genome 41:91–95CrossRefPubMedGoogle Scholar
  36. Kawchuk L, Hachey J, Lynch DR, Klcsar F, van Rooijen G et al (2001) Tomato Ve disease resistance genes encode cell surface-like receptors. Proc Natl Acad Sci U S A 98:6511–6515CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kwok PY (2001) Methods for genotyping single nucleotide polymorphisms. Annu Rev Genomics Hum Genet 2:235–258CrossRefPubMedGoogle Scholar
  38. Lim GTT, Wang GP, Hemming MN, Basuki S, McGrath DJ, Carroll BJ, Jones DA (2006) Mapping the I-3 gene for resistance for Fusarium wilt in tomato: application of an I-3 marker in tomato improvement and progress towards the cloning of I-3. Australas Plant Pathol 35:671–680CrossRefGoogle Scholar
  39. Liviak KJ, Marmaro J, Todd JA (1995) Towards fully automated genome-wide polymorphism screening. Nat Genet 9:341–342CrossRefGoogle Scholar
  40. Lorenz AJ, Chao S, Asoro FG, Heffner EL, Hayashi T, Iwata H, Smith KP, Sorrells ME, Jannink JL (2011) Genomic selection in plant breeding: knowledge and prospects. Adv Agron 110:77–123CrossRefGoogle Scholar
  41. Martin GB, Brommonschenkel SH, Chunwongse J, Frary A, Ganal MW, Spivey R, Wu T, Earle ED, Tanksley SD (1993) Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262:1432–1436CrossRefPubMedGoogle Scholar
  42. Matsunaga H, Saito T, Hirai M, Nunome T, Yoshida T (2003) DNA markers linked to pepper mild mottle virus (PMMoV) resistant locus (L 4) in Capsicum. J Jpn Soc Hortic Sci 72:218–220CrossRefGoogle Scholar
  43. McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, Ioannidis JPA, Hirschhorn JN (2008) Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet 9:356–369CrossRefPubMedGoogle Scholar
  44. McCouch SR, Kochert G, Yu ZH, Wang ZY, Khush GS, Coffman WR, Tanksley SD (1988) Molecular mapping of rice chromosomes. Theor Appl Genet 76:815–829CrossRefPubMedGoogle Scholar
  45. Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829PubMedPubMedCentralGoogle Scholar
  46. Milbourne D, Pande B, Bryan GJ (2007) Potato. In: Kole C (ed) Genome mapping and molecular breeding in plants, vol 3, Pulses, sugar and tuber crops. Springer, Heidelberg, pp 205–236Google Scholar
  47. Miyatake K, Saito T, Negoro S, Yamaguchi H, Nunome T, Ohyama A, Fukuoka H (2012) Development of selective markers linked to a major QTL for parthenocarpy in eggplant (Solanum melongena L.). Theor Appl Genet 124:1403–1413CrossRefPubMedGoogle Scholar
  48. Moury B, Pflieger S, Blattes A, Lefebvre V, Palloix A (2000) A CAPS marker to assist selection of tomato spotted wilt virus (TSWV) resistance in pepper. Genome 43:137–142CrossRefPubMedGoogle Scholar
  49. Mutlu N, Boyaci FH, Göçmen M, Abak K (2008) Development of SRAP, SRAP-RGA, RAPD and SCAR markers linked with a Fusarium wilt resistance gene in eggplant. Theor Appl Genet 117:1303–1312CrossRefPubMedGoogle Scholar
  50. Nicolai M, Pisani C, Bouchet JP, Vuylsteke M, Palloix A (2012) Discovery of a large set of SNP and SSR genetic markers by high-throughput sequencing of pepper (Capsicum annuum). Genet Mol Res 11:2295–2300CrossRefPubMedGoogle Scholar
  51. Nunome T, Ishiguro K, Yoshida T, Hirai M (2001) Mapping of fruit shape and color development traits in eggplant (Solanum melongena L.) based on RAPD and AFLP markers. Breed Sci 51:19–26CrossRefGoogle Scholar
  52. Nunome T, Negoro S, Kono I, Kanamori H, Miyatake K, Yamaguchi H, Ohyama A, Fukuoka H (2009) Development of SSR markers derived from SSR-enriched genomic library of eggplant (Solanum melongena L.). Theor Appl Genet 119:1143–1153CrossRefPubMedGoogle Scholar
  53. Ohmori T, Murata M, Motoyoahi F (1995) Identification of RAPD markers linked to the Tm-2 locus in tomato. Theor Appl Genet 90:307–311CrossRefPubMedGoogle Scholar
  54. Ohyama A, Asamizu E, Negoro S, Miyatake K, Yamaguchi H, Tabata S, Fukuoka H (2009) Characterization of tomato SSR markers developed using BAC-end and cDNA sequences from genome databases. Mol Breed 23:685–691CrossRefGoogle Scholar
  55. Ortega F, Lopez-Vizcon C (2012) Application of molecular marker-assisted selection (MAS) for disease resistance in a practical potato breeding programme. Potato Res 55:1–13CrossRefGoogle Scholar
  56. Piatek AS, Tyagi S, Pol AC, Telenti A, Miller LP, Kramer FR, Allend D (1998) Molecular beacon sequence analysis for detecting drug resistance in Mycobacterium tuberculosis. Nat Biotechnol 16:359–363CrossRefPubMedGoogle Scholar
  57. Polans NO, Weeden NF, Thompson WF (1985) Inheritance, organization, and mapping of rbcS and cab multigene families in pea. Proc Natl Acad Sci U S A 82:5083–5087CrossRefPubMedPubMedCentralGoogle Scholar
  58. Ranc N, Muños S, Xu J, Le Paslier MC, Chauveau A, Bounon R, Rolland S, Bouchet JP, Brunel D, Causse M (2012) Genome-wide association mapping in tomato (Solanum lycopersicum) is possible using genome admixture of Solanum lycopersicum var. cerasiforme. G3 2:853–864CrossRefPubMedPubMedCentralGoogle Scholar
  59. Rodríguez GR, Muños S, Anderson C, Sim SC, Michel A, Causse M, Gardener BB, Francis D, van der Knaap E (2011) Distribution of SUN, OVATE, LC, and FAS in the tomato germplasm and the relationship to fruit shape diversity. Plant Physiol 156:275–285CrossRefPubMedPubMedCentralGoogle Scholar
  60. Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci U S A 81:8014–8018CrossRefPubMedPubMedCentralGoogle Scholar
  61. Sarfatti M, Katan J, Fluhr R, Zamir D (1989) An RFLP marker in tomato linked to the Fusarium oxysporum resistance gene I2. Theor Appl Genet 78:755–759CrossRefPubMedGoogle Scholar
  62. Sarfatti M, Abu-Abied M, Katan J, Zamir D (1991) RFLP mapping of I1, a new locus in tomato conferring resistance against Fusarium oxysporum f. sp. lycopersici race 1. Theor Appl Genet 82:22–26CrossRefPubMedGoogle Scholar
  63. Saritnum O, Minami M, Matsushima K, Minamiyama Y, Hirai M, Baba T, Bansho H, Nemoto K (2008) Inheritance of few-pungent trait in chili pepper ‘S3212’ (Capsicum frutescens). J Jpn Soc Hortic Sci 77:265–269CrossRefGoogle Scholar
  64. Shirasawa K, Asamizu E, Fukuoka H, Ohyama A, Sato S et al (2010) An interspecific linkage map of SSR and intronic polymorphism markers in tomato. Theor Appl Genet 121:731–739CrossRefPubMedPubMedCentralGoogle Scholar
  65. Shirasawa K, Fukuoka H, Matsunaga H, Kobayashi Y, Kobayashi I, Hirakawa H, Isobe S, Tabata S (2013) Genome-wide association studies using single nucleotide polymorphism markers developed by re-sequencing of the genomes of cultivated tomato. DNA Res 20:593–603CrossRefPubMedPubMedCentralGoogle Scholar
  66. Sim SC, Durstewitz G, Plieske J, Wieseke R, Ganal MW et al (2012a) Development of a large SNP genotyping array and generation of high-density genetic maps in tomato. PLoS One 7:e40563. doi: 10.1371/journal.pone.0040563 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Sim SC, Van Deynze A, Stoffel K, Douches DS, Zarka D et al (2012b) High-density SNP genotyping of tomato (Solanum lycopersicum L.) reveals patterns of genetic variation due to breeding. PLoS One 7:e45520. doi: 10.1371/journal.pone.0045520 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Simons G, Groenendijk J, Wijbrandi J, Reijans M, Groenen J et al (1998) Dissection of the Fusarium I-2 gene cluster in tomato reveals six homologs and one active gene copy. Plant Cell 10:1055–1068CrossRefPubMedPubMedCentralGoogle Scholar
  69. Sommer SS, Groszbach AR, Bottema CD (1992) PCR amplification of specific alleles (PASA) is a general method for rapidly detecting known single-base changes. Biotechniques 12:82–87PubMedGoogle Scholar
  70. Stewart C Jr, Kang BC, Liu K, Mazourek M, Moore SL, Yoo EY, Kim BD, Paran I, Jahn MM (2005) The Pun1 gene for pungency in pepper encodes a putative acyltransferase. Plant J 42:675–688CrossRefPubMedGoogle Scholar
  71. Sugita T, Yamaguchi K, Sugimura Y, Nagata R, Yuji K, Kinoshita T, Todoroki A (2004) Development of SCAR markers linked to L 3 gene in Capsicum. Breed Sci 54:111–115CrossRefGoogle Scholar
  72. Sugita T, Semi Y, Sawada H, Utoyama Y, Hosomi Y, Yoshimoto E, Haehata Y, Fukuoka H, Nagata R, Ohyama A (2013) Development of simple sequence repeat markers and construction of a high-density linkage map of Capsicum annuum. Mol Breed 31:909–920CrossRefGoogle Scholar
  73. Syvanen AC (2001) From gels to chips: “minisequencing” primer extension for analysis of point mutations and single nucleotide polymorphisms. Hum Mutat 13:1–10CrossRefGoogle Scholar
  74. Tanksley SD, Ganal MW, Prince JP, DeVicente MC, Bonierbale MW, Broun P, Fulton TM, Giovannoni JJ, Grandillo S (1992) High density molecular linkage maps of the tomato and potato genomes. Genetics 132:1141–1160PubMedPubMedCentralGoogle Scholar
  75. The Potato Genome Sequencing Consortium (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189–195CrossRefGoogle Scholar
  76. The Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641CrossRefGoogle Scholar
  77. Thomas CM, Jones DA, Parniske M, Harrison K, Balint-Kurti PJ, Hatzixanthis K, Jones JD (1997) Characterization of the tomato Cf-4 gene for resistance to Cladosporium fulvum identifies sequences that determine recognitional specificity in Cf-4 and Cf-9. Plant Cell 9:2209–2224CrossRefPubMedPubMedCentralGoogle Scholar
  78. Toppino L, Valè G, Rotino GL (2008) Inheritance of Fusarium wilt resistance introgressed from Solanum aethiopicum Gilo and Aculeatum groups into cultivated eggplant (S. melongena) and development of associated PCR-based markers. Mol Breed 22:237–250CrossRefGoogle Scholar
  79. Verlaan MG, Hutton SF, Ibrahem RM, Kormelink R, Visser RGF, Scott JW, Edwards JD, Bai Y (2013) The tomato yellow leaf curl virus resistance genes Ty-1 and Ty-3 are allelic and code for DFDGD-class RNA-dependent RNA polymerases. PLoS Genet 9:e1003399. doi: 10.1371/journal.pgen.1003399 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Wang D (2006) The genes of Capsicum. HortSci 41:1169–1187Google Scholar
  81. Wang J, Chuang K, Ahluwalia M, Patel S, Umblas N, Mirel D, Higuchi R, Germer S (2005) High-throughput SNP genotyping by single-tube PCR with Tm-shift primers. Biotechniques 39:885–893CrossRefPubMedGoogle Scholar
  82. Williamson VM, Ho JY, Wu FF, Miller N, Kaloshian I (1994) A PCR-based marker tightly linked to the nematode resistance gene, Mi, in tomato. Theor Appl Genet 87:757–763CrossRefPubMedGoogle Scholar
  83. Wu F, Mueller LA, Crouzillat D, Petiard V, Tanksley SD (2006) Combining bioinformatics and phylogenetics to identify large sets of single-copy orthologous genes (COSII) for comparative, evolutionary and systematic studies: a test case in the euasterid plant clade. Genetics 174:1407–1420CrossRefPubMedPubMedCentralGoogle Scholar
  84. Wu F, Eannetta NT, Xu Y, Durrett R, Mazourek M, Jahn MM, Tanksley SD (2009a) A COSII genetic map of the pepper genome provides a detailed picture of synteny with tomato and new insights into recent chromosome evolution in the genus Capsicum. Theor Appl Genet 118:1279–1293CrossRefPubMedGoogle Scholar
  85. Wu F, Eannetta NT, Xu Y, Tanksley SD (2009b) A detailed synteny map of the eggplant genome based on conserved ortholog set II (COSII) markers. Theor Appl Genet 118:927–935CrossRefPubMedGoogle Scholar
  86. Wu F, Eanetta NT, Xu Y, Plieske J, Ganal M, Pozzi C, Bakaher N, Tanksley SD (2009c) COSII genetics maps of two diploid Nicotiana species provide a detailed picture of synteny with tomato and insights into chromosome evolution in tetraploid N. tabacum. Theor Appl Genet 120:809–827CrossRefPubMedGoogle Scholar
  87. Xu X, Liu X, Ge S, Jensen JD, Hu F et al (2012) Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nat Biotechnol 30:105–111CrossRefGoogle Scholar
  88. Yan J, Shah T, Warburton ML, Buckler ES, McMullen MD, Crouch J (2009) Genetic characterization and linkage disequilibrium estimation of a global maize collection using SNP markers. PLoS One 4(12):e8451. doi: 10.1371/journal.pone.0008451 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Yano M, Kojima S, Takahashi Y, Lin H, Sasaki T (2001) Genetic control of flowering time in rice, a short-day plant. Plant Physiol 127:1425–1429CrossRefPubMedPubMedCentralGoogle Scholar
  90. Yu J, Buckler ES (2006) Genetic association mapping and genome organization of maize. Curr Opin Biotechnol 17:155–160CrossRefPubMedGoogle Scholar
  91. Zhang B, Huang S, Yang G, Guo J (2000) Two RAPD markers linked to a major fertility restorer gene in pepper. Euphytica 113:155–161CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.NARO Institute of Vegetable and Tea ScienceNational Agriculture and Food Research OrganizationKusawaJapan

Personalised recommendations