Analytical Applications of Ionic Liquids in Chromatographic and Electrophoretic Separation Techniques

  • María J. Trujillo-Rodríguez
  • Ana M. Afonso
  • Verónica Pino
Part of the Green Chemistry and Sustainable Technology book series (GCST)


The synthetic tunability of ionic liquids (ILs), their structural versatility, and the wide range of interest properties that can present (from water soluble to water insoluble, from low density to high density, etc.), together with their impressive solvation abilities for different organic compounds, make their use in chromatographic and electrophoretic separation techniques an obvious approach of enormous interest. In fact, the studies of ILs have covered a number of topics in chromatographic and electrophoretic methods, from basic studies of performance to the development of complete analytical methods. Thus, they have been used in high-performance liquid chromatography (HPLC) as modifiers of mobile phases, as additives of mobile phases to improve the separation of basic analytes, as novel HPLC stationary phases, and even as pseudo-stationary phases in HPLC when utilizing ionic liquid-based surfactants, in a mode of micellar liquid chromatography (MLC). They have also experienced applications in counter-current chromatography (CCC), in which all phases involved have a liquid nature, acting as mobile phases or as stationary phases. In gas chromatography (GC), ILs have experienced an important application for developing novel stationary phases, characterized by their ability to separate polar and nonpolar compounds simultaneously, which is a problem in conventional GC columns. Moreover, they have been employed in capillary electrophoresis (CE) as background electrolytes in capillary zone electrophoresis (CZE), as pseudo-stationary phases in micellar electrokinetic chromatography (MEKC) if using IL-based surfactants at concentrations ensuring micelle formation and also in on-line CE preconcentration techniques based on the use of IL-based surfactants micelles such as sweeping-MEKC or micelle to solvent stacking, among others.


Ionic liquids Ionic liquid-based surfactants Polymeric ionic liquids High-performance liquid chromatography Counter-current chromatography Gas chromatography Capillary electrophoresis Stationary phases Micellar liquid chromatography Micellar electrokinetic chromatography 


  1. 1.
    Poole CF, Kersten BR, Ho SSJ, Coddens ME, Furton KG (1986) Organic salts, liquid at room temperature, as mobile phases in liquid chromatography. J Chromatogr 352:407–425CrossRefGoogle Scholar
  2. 2.
    Shetty PH, Youngberg PJ, Kersten BR, Poole CF (1987) Solvent properties of liquid organic salts used as mobile phases in microcolumn reversed-phase liquid chromatography. J Chromatogr 411:61–79CrossRefGoogle Scholar
  3. 3.
    Waichigo MM, Danielson ND (2006) Comparison of ethylammonium formate to methanol as a mobile-phase modifier for reversed-phase liquid chromatography. J Sep Sci 29:599–606CrossRefGoogle Scholar
  4. 4.
    Waichigo MM, Hunter BM, Riechel TL, Danielson ND (2007) Alkylammonium formate ionic liquids as organic mobile phase replacements for reversed-phase liquid chromatography. J Liq Chromatogr Relat Technol 30:165–184CrossRefGoogle Scholar
  5. 5.
    Waichigo MM, Riechel TL, Danielson ND (2005) Ethylammonium acetate as a mobile phase modifier for reversed phase liquid chromatography. Chromatographia 61:17–23CrossRefGoogle Scholar
  6. 6.
    Zhou L, Danielson ND (2013) The ionic liquid isopropylammonium formate as a mobile phase modifier to improve protein stability during reversed phase liquid chromatography. J Chromatogr B 940:112–120CrossRefGoogle Scholar
  7. 7.
    Martín-Calero A, Pino V, Ayala JH, Afonso AM (2012) Roles of ionic liquids in high performance liquid chromatography. In: Mun J, Sim H (eds) Handbook of ionic liquids: properties, applications and hazards, 1st edn. Nova Science Publishers, New York, pp 373–394Google Scholar
  8. 8.
    Fernandez-Navarro JJ, Garcia-Álvarez-Coque MC, Ruiz-Angel MJ (2011) The role of the dual nature of ionic liquids in the reversed-phase liquid chromatographic separation of basic drugs. J Chromatogr A 1218:398–407CrossRefGoogle Scholar
  9. 9.
    Nawrocki J (1997) The silanol group and its role in liquid chromatography. J Chromatogr A 779:29–71CrossRefGoogle Scholar
  10. 10.
    Krupczynska K, Buszewski B, Jandera P (2004) Characterizing HPLC stationary phases. Anal Chem 76:226A–234ACrossRefGoogle Scholar
  11. 11.
    Vervoort RJM, Maris FA, Hindriks H (1992) Comparison of high-performance liquid chromatographic methods for the analysis of basic drugs. J Chromatogr 623:207–220CrossRefGoogle Scholar
  12. 12.
    Claessens HA (2001) Trends and progress in the characterization of stationary phases for reversed-phase liquid chromatography. Trends Anal Chem 20:563–583CrossRefGoogle Scholar
  13. 13.
    Tang Y, Sun A, Liu R, Zhang Y (2013) Simultaneous determination of fangchinoline and tetrandrine in Stephania tetrandra S. Moore by using 1-alkyl-3-methylimidazolium-based ionic liquids as the RP-HPLC mobile phase additives. Anal Chim Acta 767:148–154CrossRefGoogle Scholar
  14. 14.
    Forlay-Frick P, Fekete J (2004) Comparison of selected stationary phases for determination of vancomycin and ciprofloxacin using buffered mobile phases, with and without triethylamine. J Liq Chromatogr Relat Technol 27:123–143CrossRefGoogle Scholar
  15. 15.
    Janoszka B, Błaszczyk U, Damasiewicz-Bodzek A, Sajewicz M (2009) Analysis of heterocyclic amines (HAs) in pan-fried pork meat and its gravy by liquid chromatography with diode array detection. Food Chem 113:1188–1196CrossRefGoogle Scholar
  16. 16.
    Cole SR, Dorsey JG (1997) Cyclohexylamine additives for enhanced peptide separations in reversed phase liquid chromatography. Biomed Chromatogr 11:167–171CrossRefGoogle Scholar
  17. 17.
    Ruiz-Angel MJ, Carda-Broch S, Berthod A (2006) Ionic liquids versus triethylamine as mobile phase additives in the analysis of β-blockers. J Chromatogr A 1119:202–208CrossRefGoogle Scholar
  18. 18.
    Berthod A, Ruiz-Ángel MJ, Carda-Broch S (2008) Ionic liquids in separation techniques. J Chromatogr A 1184:6–18CrossRefGoogle Scholar
  19. 19.
    Berthod A, Ruiz-Ángel MJ, Huguet S (2005) Non-molecular solvents in separation methods: dual nature of room temperature ionic liquids. Anal Chem 77:4071–4080CrossRefGoogle Scholar
  20. 20.
    Zhang W, He L, Yanglong G, Liu X, Jiang S (2003) Effect of ionic liquids as mobile phase additives on retention of catecholamines in reversed-phase high-performance liquid chromatography. Anal Lett 36:827–838CrossRefGoogle Scholar
  21. 21.
    He L, Zhang W, Zhao L, Liu X, Jiang S (2003) Effect of 1-alkyl-3-methylimidazolium-based ionic liquids as the eluent on the separation of ephedrines by liquid chromatography. J Chromatogr A 1007:39–45CrossRefGoogle Scholar
  22. 22.
    Polyakova Y, Row KH (2006) Retention behaviour of N-CBZ-D-phenylalanine and D-tryptophan: effect of ionic liquid as mobile-phase modifier. Acta Chromatogr 17:210–221Google Scholar
  23. 23.
    Hua JC, Polyakova Y, Row KH (2007) Effect of concentration of ionic liquids on resolution of nucleotides in reversed-phase liquid chromatography. Bull Korean Chem Soc 28:601–606CrossRefGoogle Scholar
  24. 24.
    Hu X, Peng J, Huang Y, Yin D, Liu J (2009) Ionic liquids as mobile phase additives for high-performance liquid chromatography separation of phenoxy acid herbicides and phenols. J Sep Sci 32:4126–4132CrossRefGoogle Scholar
  25. 25.
    Kaliszan R, Marszałł MP, Markuszewki MJ, Bączek T, Pernak J (2004) Suppression of deleterious effects of free silanols in liquid chromatography by imidazolium tetrafluoroborate ionic liquids. J Chromatogr A 1030:263–271CrossRefGoogle Scholar
  26. 26.
    Marszałł MP, Bączek T, Kaliszan R (2005) Reduction of silanophilic interactions in liquid chromatography with the use of ionic liquids. Anal Chim Acta 547:172–178CrossRefGoogle Scholar
  27. 27.
    Martín-Calero A, Ayala JH, González V, Afonso AM (2009) Ionic liquids as desorption solvents and memory effect suppressors in heterocyclic aromatic amines determination by SPME-HPLC fluorescence. Anal Bioanal Chem 394:937–946CrossRefGoogle Scholar
  28. 28.
    Martín-Calero A, Tejral G, Ayala JH, González V, Afonso AM (2010) Suitability of ionic liquids as mobile-phase additives in HPLC with fluorescence and UV detection for the determination of heterocyclic aromatic amines. J Sep Sci 33:182–190CrossRefGoogle Scholar
  29. 29.
    Martín-Calero A, Pino V, Ayala JH, González V, Afonso AM (2009) Ionic liquids as mobile phase additives in high-performance liquid chromatography with electrochemical detection: application to the determination of heterocyclic aromatic amines in meat-based infant foods. Talanta 79:590–597CrossRefGoogle Scholar
  30. 30.
    Ho TD, Zhang C, Hantao LW, Anderson JL (2014) Ionic liquids in analytical chemistry: fundamentals, advances, and perspectives. Anal Chem 86:262–285CrossRefGoogle Scholar
  31. 31.
    Sun P, Armstrong DW (2010) Ionic liquids in analytical chemistry. Anal Chim Acta 661:1–16CrossRefGoogle Scholar
  32. 32.
    Liu J-F, Jönsson JA, Jiang G-B (2005) Application of ionic liquids in analytical chemistry. Trends Anal Chem 24:20–27CrossRefGoogle Scholar
  33. 33.
    Flieger J, Czajkowska-Zelazko A, Rzadkowska M, Szacon E, Matosiuk D (2012) Usefulness of reversed-phase HPLC enriched with room temperature imidazolium based ionic liquids for lipophilicity determination of the newly synthesized analgesic active urea derivatives. J Pharm Biomed Anal 66:58–67CrossRefGoogle Scholar
  34. 34.
    Suh JH, Kim J, Jung J, Kim K, Lee SG, Cho H-D, Jung Y, Han SB (2013) Determination of thiamine in pharmaceutical preparations by reverse phase liquid chromatography without use of organic solvent. Bull Korean Chem Soc 34:1745–1750CrossRefGoogle Scholar
  35. 35.
    Jia P, Wang S, Meng X, Lan W, Luo J, Liao S, Xiao C, Zheng X, Li L, Liu Q, Zheng J, Zhou Y, Zheng X (2013) Effects of ionic liquid and nanogold particles on high-performance liquid chromatography-electrochemical detection and their application in highly efficient separation and sensitive analysis of five phenolic acids in Xuebijing injection. Talanta 107:103–110CrossRefGoogle Scholar
  36. 36.
    Xiao X, Zhao L, Xia L, Jiang S (2004) Ionic liquids as additives in high performance liquid chromatography. Analysis of amines and the interaction mechanism of ionic liquids. Anal Chim Acta 519:207–211CrossRefGoogle Scholar
  37. 37.
    Zheng J, Polyakova Y, Row KH (2006) Retention factors and resolutions of amino benzoic acid isomers with some ionic liquids. Biotechnol Bioprocess Eng 11:477–483CrossRefGoogle Scholar
  38. 38.
    Polyakova Y, Jin Y, Zheng J, Row KH (2006) Effect of concentration of ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate, for retention and separation of some amino and nucleic acids. J Liq Chromatogr Relat Technol 29:1687–1701CrossRefGoogle Scholar
  39. 39.
    Marszałł MP, Bączek T, Kaliszan R (2006) Evaluation of the silanol-suppressing potency of ionic liquids. J Sep Sci 29:1138–1145CrossRefGoogle Scholar
  40. 40.
    Herrera-Herrera AV, Hernández-Borges J, Rodríguez-Delgado MA (2008) Ionic liquids as mobile phase additives for the high-performance liquid chromatographic analysis of fluoroquinolone antibiotics in water samples. Anal Bioanal Chem 392:1439–1446CrossRefGoogle Scholar
  41. 41.
    Chen B, He M, Mao X, Cui R, Pang D, Hu B (2011) Ionic liquids improved reversed-phase HPLC on line coupled with ICP-MS for selenium speciation. Talanta 83:724–731CrossRefGoogle Scholar
  42. 42.
    Bi W, Tian M, Row KH (2010) Chiral separation and determination of ofloxacin enantiomers by ionic liquid-assisted ligand-exchange chromatography. Analyst 136:379–387CrossRefGoogle Scholar
  43. 43.
    Zhang M, Liang X, Jiang S, Qiu H (2014) Preparation and applications of surface-confined ionic-liquid stationary phases for liquid chromatography. Trends Anal Chem 53:60–72CrossRefGoogle Scholar
  44. 44.
    Nahum A, Horváth C (1981) Surface silanols in silica-bonded hydrocarbonaceous stationary phases. I. Dual retention mechanism in reversed-phase chromatography. J Chromatogr 203:53–63CrossRefGoogle Scholar
  45. 45.
    Bij KE, Horváth C, Melander WR, Nahum A (1981) Surface silanols in silica-bonded hydrocarbonaceous stationary phases. II. Irregular retention behavior and effect of silanol masking. J Chromatogr 203:65–84CrossRefGoogle Scholar
  46. 46.
    Pino V, Germán-Hernández M, Martín-Pérez A, Anderson JL (2012) Ionic liquid-based surfactants in separation science. Sep Sci Technol 47:264–276CrossRefGoogle Scholar
  47. 47.
    Pino V, Germán-Hernández M, Martín-Pérez A (2011) Ionic liquid-based surfactants. In: Mun J, Sim H (eds) Handbook of ionic liquids: properties, applications and hazards, 1st edn. Nova Science Publishers, New York, pp 301–324Google Scholar
  48. 48.
    Trujillo-Rodríguez MJ, González-Hernández P, Pino V (2015) Analytical applications of ionic liquid-based surfactants in separation science. In: Paul BK, Moulik SP (eds) Ionic liquid-based surfactant science: formulation, characterization and applications, 1st edn. Wiley, New York, pp 475–502. ISBN: 978-1-118-83419-0CrossRefGoogle Scholar
  49. 49.
    Esteve-Romero J, Carda-Broch S, Gil-Agustí M, Capella-Peiró ME, Bose D (2005) Micellar liquid chromatography for the determination of drug materials in pharmaceutical preparations and biological samples. Trends Anal Chem 24:75–91CrossRefGoogle Scholar
  50. 50.
    Ruiz-Angel MJ, Carda-Broch S, Torres-Lapasio JR, Garcia-Alvarez-Coque MC (2009) Retention mechanisms in micellar liquid chromatography. J Chromatogr A 1216:1798–1814CrossRefGoogle Scholar
  51. 51.
    Armstrong DW, Nome F (1981) Partitioning behavior of solutes eluted with micellar mobile phases in liquid chromatography. Anal Chem 53:1662–1666CrossRefGoogle Scholar
  52. 52.
    Pino V, Yao C, Anderson JL (2009) Micellization and interfacial behavior of imidazolium-based ionic liquids in organic solvent–water mixtures. J Colloid Interface Sci 333:548–556CrossRefGoogle Scholar
  53. 53.
    Flieger J, Siwek A, Pizon M, Czajkowska-Zelazko A (2013) Ionic liquids as surfactants in micellar liquid chromatography. J Sep Sci 36:1530–1536CrossRefGoogle Scholar
  54. 54.
    Qiu H, Liang X, Sun M, Jiang S (2011) Development of silica-based stationary phases for high-performance liquid chromatography. Anal Bioanal Chem 399:3307–3322CrossRefGoogle Scholar
  55. 55.
    Wang Y, Tian M, Bi W, Row KH (2009) Application of ionic liquids in high performance reversed-phase chromatography. Int J Mol Sci 10:2591–2610CrossRefGoogle Scholar
  56. 56.
    Koel M (ed) (2009) Ionic liquids in chemical analysis. CRC Press Taylor & Francis Group, New YorkGoogle Scholar
  57. 57.
    Liu SJ, Zhou F, Xiao XH, Zhao L, Liu X, Jiang SX (2004) Surface confined ionic liquid – a new stationary phase for the separation of ephedrines in high-performance liquid chromatography. Chin Chem Lett 15:1060–1062Google Scholar
  58. 58.
    Pino V, Afonso AM (2012) Surface-bonded ionic liquid stationary phases in high-performance liquid chromatography – a review. Anal Chim Acta 714:20–37CrossRefGoogle Scholar
  59. 59.
    Sales JAA, Prado AGS, Airoldi C (2002) The incorporation of propane-1,3-diamine into silylant epoxide group through homogeneous and heterogeneous routes. Polyhedron 21:2647–2651CrossRefGoogle Scholar
  60. 60.
    Melo MA Jr, Oliveira FJVE, Sales JAA, Airoldi C (2009) Useful aminoalcohol molecules incorporated in an epoxide silylating agent for silica organo-functionalization and thermodynamics of copper removal. New J Chem 33:1038–1046CrossRefGoogle Scholar
  61. 61.
    Zhang M, Chen J, Gu T, Qiu H, Jiang S (2014) Novel imidazolium-embedded and imidazolium-space doctadecyl stationary phases for reversed phase liquid chromatography. Talanta 126:177–184CrossRefGoogle Scholar
  62. 62.
    Auler LMLA, Silva CR, Collins KE, Collins CH (2005) New stationary phase for anion-exchange chromatography. J Chromatogr A 1073:147–153CrossRefGoogle Scholar
  63. 63.
    Van Meter DS, Stuart OD, Carle AB, Stalcup AM (2008) Characterization of a novel pyridinium bromide surface confined ionic liquid stationary phase for high-performance liquid chromatography under normal phase conditions via linear solvation energy relationships. J Chromatogr A 1191:67–71CrossRefGoogle Scholar
  64. 64.
    Liu Q, Liang T, Li K, Ke Y, Jin Y, Liang X (2012) Preparation of a stationary phase with quaternary ammonium embedded group for selective separation of alkaloids based on ion-exclusion interaction. J Sep Sci 35:2685–2692CrossRefGoogle Scholar
  65. 65.
    Bi W, Zhou J, Row KH (2010) Separation of xylose and glucose on different silica confined ionic liquid stationary phases. Anal Chim Acta 677:162–168CrossRefGoogle Scholar
  66. 66.
    Liang X, Chen Q, Liu X, Jiang S (2008) Comparison of liquid chromatographic behaviors on N-methylimidazolium functionalized ZrO2/SiO2 −4 and N-methylimidazolium functionalized SiO2 stationary phases. J Chromatogr A 1182:197–204CrossRefGoogle Scholar
  67. 67.
    Bi W, Row KH (2010) Comparison of different silica-based imidazolium stationary phases for LC in separation of alkaloids. Chromatographia 71:25–30CrossRefGoogle Scholar
  68. 68.
    Wang Q, Baker GA, Baker SN, Colón LA (2006) Surface confined ionic liquid as a stationary phase for HPLC. Analyst 131:1000–1005CrossRefGoogle Scholar
  69. 69.
    Qiu H, Jiang Q, Liu X, Jiang S (2008) Comparison of anion-exchange and hydrophobic interactions between two new silica-based long-chain alkylimidazolium stationary phases for LC. Chromatographia 68:167–171CrossRefGoogle Scholar
  70. 70.
    Sun Y, Cabovsk B, Evans CE, Ridgway TH, Stalcup AM (2005) Retention characteristics of a new butylimidazolium-based stationary phase. Anal Bioanal Chem 382:728–734CrossRefGoogle Scholar
  71. 71.
    Chitta KR, Van Meter DS, Stalcup AM (2010) Separation of peptides by HPLC using a surface-confined ionic liquid stationary phase. Anal Bioanal Chem 396:775–781CrossRefGoogle Scholar
  72. 72.
    Van Meter DS, Oliver NJ, Carle AB, Dehm S, Ridgway TH, Stalcup AM (2009) Characterization of surface-confined ionic liquid stationary phases: impact of cation and anion identity on retention. Anal Bioanal Chem 393:283–294CrossRefGoogle Scholar
  73. 73.
    Qiu H, Mallik AB, Takafuji M, Liu X, Jiang S, Ihara H (2012) A new imidazolium-embedded C18 stationary phase with enhanced performance in reversed-phase liquid chromatography. Anal Chim Acta 738:95–101CrossRefGoogle Scholar
  74. 74.
    Qiu H, Jiang Q, Wei Z, Wang X, Liu X, Jiang S (2007) Preparation and evaluation of a silica-based 1-alkyl-3-(propyl-3-sulfonate) imidazolium zwitterionic stationary phase for high-performance liquid chromatography. J Chromatogr A 1163:63–69CrossRefGoogle Scholar
  75. 75.
    Qiu H, Wang L, Liu X, Jiang S (2009) Preparation and characterization of silica confined ionic liquids as chromatographic stationary phases through surface radical chain-transfer reaction. Analyst 134:460–465CrossRefGoogle Scholar
  76. 76.
    Qiu H, Mallik AK, Takafuji M, Jiang S, Ihara H (2012) New poly(ionic liquid)-grafted silica multi-mode stationary phase for anion-exchange/reversed phase/hydrophilic interaction liquid chromatography. Analyst 137:2553–2555CrossRefGoogle Scholar
  77. 77.
    Qiao L, Li H, Shan Y, Wang S, Shi X, Lu X, Xu G (2014) Study of surface-bonded dicationic ionic liquids as stationary phases for hydrophilic interaction chromatography. J Chromatogr A 1330:40–50CrossRefGoogle Scholar
  78. 78.
    Qiu H, Jiang S, Takafuji M, Ihara H (2013) Polyanionic and polyzwitterionic azobenzene ionic liquid-functionalized silica materials and their chromatographic applications. Chem Commun 49:2454–2456CrossRefGoogle Scholar
  79. 79.
    Qiu H, Takafuji M, Liu X, Jiang S, Ihara H (2010) Investigation of p-p and ion dipole interactions on 1-allyl-3-butylimidazolium ionic liquid-modified silica stationary phase in reversed-phase liquid chromatography. J Chromatogr A 1217:5190–5196CrossRefGoogle Scholar
  80. 80.
    Qiu H, Jiang S, Liu X (2006) N-methylimidazolium anion-exchange stationary phase for high-performance liquid chromatography. J Chromatogr A 1103:265–270CrossRefGoogle Scholar
  81. 81.
    Qiao L, Dou A, Shi X, Li H, Shan Y, Lu X, Xu G (2013) Development and evaluation of new imidazolium-based zwitterionic stationary phases for hydrophilic interaction chromatography. J Chromatogr A 1286:137–145CrossRefGoogle Scholar
  82. 82.
    Torregrosa R, Pastor IM, Yus M (2007) Solvent-free direct regioselective ring opening of epoxides with imidazoles. Tetrahedron 63:469–473CrossRefGoogle Scholar
  83. 83.
    Qiu H, Mallik AK, Sawada T, Takafuji M, Ihara H (2012) New surface-confined ionic liquid stationary phases with enhanced chromatographic selectivity and stability by co-immobilization of polymerizable anion and cation pairs. Chem Commun 48:1299–1301CrossRefGoogle Scholar
  84. 84.
    Qiu H, Mallik AK, Takafuji M, Liu X, Jiang S, Ihara H (2012) Enhancement of molecular shape selectivity by in situ anion-exchange in poly(octadecylimidazolium) silica column. J Chromatogr A 1232:116–122CrossRefGoogle Scholar
  85. 85.
    Qiu H, Jiang S, Liu X, Zhao L (2006) Novel imidazolium stationary phase for high-performance liquid chromatography. J Chromatogr A 1116:46–50CrossRefGoogle Scholar
  86. 86.
    Qiu H, Takafuji M, Sawada T, Liu X, Jiang S, Ihara H (2010) New strategy for drastic enhancement of selectivity via chemical modification of counter anions in ionic liquid polymer phase. Chem Commun 46:8740–8742CrossRefGoogle Scholar
  87. 87.
    Qiu H, Mallik AK, Takafuji M, Ihara H (2011) A facile and specific approach to new liquid chromatography adsorbents obtained by ionic self-assembly. Chem Eur J 17:7288–7293CrossRefGoogle Scholar
  88. 88.
    Chou F-M, Wang W-T, Wei G-T (2009) Using subcritical/supercritical fluid chromatography to separate acidic, basic, and neutral compounds over an ionic liquid-functionalized stationary phase. J Chromatogr A 1216:3594–3599CrossRefGoogle Scholar
  89. 89.
    Fornstedt T (2010) Characterization of adsorption processes in analytical liquid-solid chromatography. J Chromatogr A 1217:792–812CrossRefGoogle Scholar
  90. 90.
    Vitha M, Carr PW (2006) The chemical interpretation and practice of linear solvation energy relationships in chromatography. J Chromatogr A 1126:143–194CrossRefGoogle Scholar
  91. 91.
    Sun Y, Stalcup AM (2006) Mobile phase effects on retention on a new butylimidazolium-based high-performance liquid chromatographic stationary phase. J Chromatogr A 1126:276–282CrossRefGoogle Scholar
  92. 92.
    Van Meter DS, Sun Y, Parker KM, Stalcup AM (2008) Retention characteristics of a new butylimidazolium-based stationary phase. Part II: anion exchange and partitioning. Anal Bioanal Chem 390:897–905CrossRefGoogle Scholar
  93. 93.
    Fields PR, Sun Y, Stalcup AM (2011) Application of a modified linear solvation energy relationship (LSER) model to retention on a butylimidazolium-based column for high performance liquid chromatography. J Chromatogr A 1218:467–475CrossRefGoogle Scholar
  94. 94.
    Hopmann E, Goll J, Minceva M (2012) Sequential centrifugal partition chromatography: a new continuous chromatographic technology. Chem Eng Technol 35:72–82CrossRefGoogle Scholar
  95. 95.
    Hu R, Pan Y (2012) Recent trends in counter-current chromatography. Trends Anal Chem 40:15–27CrossRefGoogle Scholar
  96. 96.
    Berthod A, Ruiz-Ángel MJ, Carda-Broch S (2009) Ionic liquids as stationary phases in countercurrent chromatography. In: Koel M (ed) Ionic liquids in chemical analysis, 1st edn. CRC Press Taylor & Francis Group, New York, pp 212–228Google Scholar
  97. 97.
    Chen X, Pei D, Huang XY, Feng Z, Di D (2013) Effect of ionic liquids on preparative separation of flavonoid compounds in the extract from Brassicanapus L. pollen using high-performance counter-current chromatography. Sep Sci Technol 48:2890–2899CrossRefGoogle Scholar
  98. 98.
    Liu R, Xu L, Li A, Sun A (2010) Preparative isolation of flavonoid compounds from Oroxylum indicum by high-speed counter-current chromatography by using ionic liquids as the modifier of two phase solvent system. J Sep Sci 33:1058–1063Google Scholar
  99. 99.
    Ruiz-Ángel MJ, Pino V, Carda-Broch S, Berthod A (2007) Solvent systems for countercurrent chromatography: an aqueous two phase liquid system based on a room temperature ionic liquid. J Chromatogr A 1151:65–73CrossRefGoogle Scholar
  100. 100.
    Xu L, Li A, Sun A, Liu R (2010) Preparative isolation of neomangiferin and mangiferin from Rhizoma anemarrhenae by high-speed countercurrent chromatography using ionic liquids as a two-phase solvent system modifier. J Sep Sci 33:31–36CrossRefGoogle Scholar
  101. 101.
    Berthod A, Carda-Broch S (2004) Use of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate in countercurrent chromatography. Anal Bioanal Chem 380:168–177CrossRefGoogle Scholar
  102. 102.
    Berthod A, Carda-Broch S (2003) A new class of solvents for CCC: the room temperature ionic liquids. J Liq Chromatogr Relat Technol 26:1493–1508CrossRefGoogle Scholar
  103. 103.
    Anderson JL, Armstrong DW, Wei G-T (2006) Ionic liquids in analytical chemistry. Anal Chem 78:2892–2902CrossRefGoogle Scholar
  104. 104.
    Poole CF, Lenca N (2014) Gas chromatography on wall-coated open-tubular columns with ionic liquid stationary phases. J Chromatogr A 1357:87–109CrossRefGoogle Scholar
  105. 105.
    Poole CF, Poole SK (2011) Ionic liquid stationary phases for gas chromatography. J Sep Sci 34:888–900CrossRefGoogle Scholar
  106. 106.
    Barber DW, Phillips CSG, Tusa GF, Verdin A (1959) The chromatography of gases and vapors. Use of the stearates of bivalent manganese, cobalt, nickel, copper, and zinc as column liquids in gas chromatography. J Chem Soc 18–24Google Scholar
  107. 107.
    Gordon JE, Selwyn JE, Torne RL (1966) Molten quaternary ammonium salts as stationary liquid phases for gas-liquid partition chromatography. J Org Chem 31:1925–1930CrossRefGoogle Scholar
  108. 108.
    Pacholec F, Butler HT, Poole CF (1982) Molten organic salt phase for gas-liquid chromatography. Anal Chem 54:1938–1941CrossRefGoogle Scholar
  109. 109.
    Pacholec F, Poole CF (1983) Stationary phase properties of the organic molten salt ethylpyridinium bromide in gas chromatography. Chromatographia 17:370–374CrossRefGoogle Scholar
  110. 110.
    Poole CF, Butler HT, Coddens ME, Dhanesar SC, Pacholec F (1984) Survey of organic molten salt phases for gas chromatography. J Chromatogr 289:299–320CrossRefGoogle Scholar
  111. 111.
    Dhanser SC, Coddens ME, Poole CF (1985) Evaluation of tetraalkylammonium tetrafluoroborate salts as high-temperature stationary phases for packed and open-tubular column gas chromatography. J Chromatogr 349:249–265CrossRefGoogle Scholar
  112. 112.
    Coddens ME, Furton KG, Poole CF (1986) Synthesis and gas chromatographic stationary phase properties of alkylammonium thiocyanates. J Chromatogr 356:59–77CrossRefGoogle Scholar
  113. 113.
    Furton KG, Poole CF (1987) Solute-solvent interactions in liquid alkylammonium 4-toluenesulfonate salts studied by gas chromatography. Anal Chem 59:1170–1176CrossRefGoogle Scholar
  114. 114.
    Pomaville RM, Poole SK, Davis LJ, Poole CF (1988) Solute-solvent interactions in tetra-n-butylphosphonium salts studied by gas chromatography. J Chromatogr 438:1–14CrossRefGoogle Scholar
  115. 115.
    Pomaville RM, Poole CF (1988) Chromatographic and spectroscopic studies of the solvent properties of a new series of room-temperature liquid tetraalkylammonium sulfonates. Anal Chem 60:1103–1108CrossRefGoogle Scholar
  116. 116.
    Poole SK, Shetty PH, Poole CF (1989) Solute-solvent interactions in liquid tetrabutylammonium sulfonate salts studied by gas chromatography. Anal Chim Acta 218:241–264CrossRefGoogle Scholar
  117. 117.
    Pomaville RM, Poole CF (1989) Changes in retention and polarity accompanying the replacement of hydrogen by fluorine in tetraalkylammonium alkyl- and arylsulfonate salts used as stationary phases in gas chromatography. J Chromatogr 468:261–278CrossRefGoogle Scholar
  118. 118.
    Furton KG, Morales R (1991) Effect of anion chain length on the solvent properties of liquid tetrabutylammonium alkylsulfonate salts studied by gas-liquid chromatography. Anal Chim Acta 246:171–179CrossRefGoogle Scholar
  119. 119.
    Dhanesar SC, Coddens ME, Poole CF (1985) Influence of phase loading on the performance of whisker-walled open tubular columns coated with organic molten salts. J Chromatogr 324:415–421CrossRefGoogle Scholar
  120. 120.
    Anderson JL, Armstrong DW (2005) Immobilized ionic liquids as high-selectivity/high-temperature/high-stability gas chromatography stationary phases. Anal Chem 77:6453–6462CrossRefGoogle Scholar
  121. 121.
    Armstrong DW, Payagala T, Sidisky LM (2009) The advent and potential impact of ionic liquid stationary phases in GC and GCxGC. LCGC Eur 22:459–467Google Scholar
  122. 122.
    Ragonese C, Sciarrone D, Tranchida PQ, Dugo P, Mondello L (2012) Use of ionic liquids as stationary phases in hyphenated gas chromatography techniques. J Chromatogr A 1255:130–144CrossRefGoogle Scholar
  123. 123.
    Yao C, Anderson JL (2009) Retention characteristics of organic compounds on molten salt and ionic liquid-based gas chromatography stationary phases. J Chromatogr A 1216:1658–1712CrossRefGoogle Scholar
  124. 124.
    Hantao LW, Najafi AA, Zhang C, Augusto F, Anderson JL (2014) Tuning the selectivity of ionic liquid stationary phases for enhanced separation of nonpolar analytes in kerosene using multidimensional gas chromatography. Anal Chem 86:3717–3721CrossRefGoogle Scholar
  125. 125.
    Dhanesar SC, Poole CF (1984) Preparation and properties of open tubular columns coated with tetra-n-butylammonium tetrafluoroborate. Anal Chem 56:2509–2512CrossRefGoogle Scholar
  126. 126.
    Dhanesar SC, Coddens ME, Poole CF (1985) Surface roughening by sodium chloride deposition for the preparation of organic molten salt open tubular columns. J Chromatogr Sci 23:320–324CrossRefGoogle Scholar
  127. 127.
    Twu P, Zhao Q, Pitner WR, Acree WE, Baker GA, Anderson JL (2011) Evaluating the solvation properties of functionalized ionic liquids with varied cation/anion composition using the solvation parameter model. J Chromatogr A 1218:5311–5318CrossRefGoogle Scholar
  128. 128.
    Lu K, Qiao LZ, Qi ML, Fu RN (2010) Selectivity of guanidinium ionic liquid for capillary gas chromatography. Chin Chem Lett 21:1358–1360CrossRefGoogle Scholar
  129. 129.
    Shashkov MV, Sidelnikov VN (2012) Single cation ionic liquids as high polarity thermostable stationary liquid phases for capillary chromatography. Russ J Phys Chem 86:138–141CrossRefGoogle Scholar
  130. 130.
    Seeley JV, Seeley SK, Libby EK, Brectbach ZS, Armstrong DW (2008) Comprehensive two-dimensional gas chromatography using a high-temperature phosphonium ionic liquid column. Anal Bioanal Chem 390:323–332CrossRefGoogle Scholar
  131. 131.
    Breitbach ZS, Armstrong DW (2008) Characterization of phosphonium ionic liquids through a linear solvation energy relationship and their use as GLC stationary phases. Anal Bioanal Chem 390:1605–1617CrossRefGoogle Scholar
  132. 132.
    Qiao L, Lu K, Qi M, Fu R (2013) Separation performance of guanidinium-based ionic liquids as stationary phases for gas chromatography. J Chromatogr A 1276:112–119CrossRefGoogle Scholar
  133. 133.
    Anderson JL, Ding J, Welton T, Armstrong DW (2002) Characterizing ionic liquids on the basis of multiple solvation interactions. J Am Chem Soc 124:14247–14254CrossRefGoogle Scholar
  134. 134.
    Zhao Q, Eichhorn J, Pitner WR, Anderson JL (2009) Using the solvation parameter model to characterize functionalized ionic liquids containing the tris(pentafluoroethyl)trifluorophosphate (FAP) anion. Anal Bioanal Chem 395:225–234CrossRefGoogle Scholar
  135. 135.
    Anderson JL, Armstrong DW (2003) High-stability ionic liquids. A new class of stationary phases for gas chromatography. Anal Chem 75:4851–4858CrossRefGoogle Scholar
  136. 136.
    Álvarez JG, Gomis DB, Abrodo PA, Llorents DA, Busto E, Lombardia NR, Fernandez VG, Alvarez MDG (2011) Evaluation of new ionic liquids as high stability selective stationary phases in gas chromatography. Anal Bioanal Chem 400:1209–1216CrossRefGoogle Scholar
  137. 137.
    Hyver KJ, Sandra P (1989) High resolution gas chromatography. Hewlett-Packard, Palo AltoGoogle Scholar
  138. 138.
    Xu Q, Su B, Luo X, Xing H, Bao Z, Yang Q, Yang Y, Ren O (2012) Accurate measurements of infinite dilution activity coefficients using gas chromatography with static-wall-coated open-tubular columns. Anal Chem 84:9109–9115Google Scholar
  139. 139.
    Poole CF (2003) The essence of chromatography. Elsevier, AmsterdamGoogle Scholar
  140. 140.
    Baltazar QQ, Leininger SK, Anderson JL (2008) Binary ionic liquid mixtures as gas chromatography stationary phases for improving the separation selectivity of alcohols and aromatic compounds. J Chromatogr A 1182:119–127CrossRefGoogle Scholar
  141. 141.
    Anderson JL, Ding B, Ellern A, Armstrong DW (2005) Structure and properties of high stability geminal dicationic ionic liquids. J Am Chem Soc 127:593–604CrossRefGoogle Scholar
  142. 142.
    Huang K, Han X, Zhang X, Armstrong DW (2007) PEG-linked geminal dicationic ionic liquids as selective, high-stability gas chromatographic stationary phases. Anal Bioanal Chem 389:2265–2275CrossRefGoogle Scholar
  143. 143.
    Payagala T, Huang J, Breitbach ZS, Sharma PS, Armstrong DW (2007) Unsymmetrical dicationic ionic liquids: manipulation of physicochemical properties using specific structural architectures. Chem Mater 19:5848–5850CrossRefGoogle Scholar
  144. 144.
    Reid VR, Crank JA, Armstrong DW, Synovec RE (2008) Characterization and utilization of a novel triflate ionic liquid stationary phase for use in comprehensive two-dimensional gas chromatography. J Sep Sci 31:3429–3436CrossRefGoogle Scholar
  145. 145.
    Payagala T, Zhang Y, Wanigasekara E, Huang K, Breitbach ZS, Sharma PS, Sidisky LM, Armstrong DW (2009) Trigonal tricationic ionic liquids: a generation of gas chromatographic stationary phases. Anal Chem 81:160–173CrossRefGoogle Scholar
  146. 146.
    Mutelet F, Moise J-C, Skrzypczak A (2011) Evaluation of the performance of trigeminal tricationic ionic liquids for separation problems. J Chem Eng Data 57: 918–927CrossRefGoogle Scholar
  147. 147.
    González-Álvarez J, Blanco-Gomis D, Arias-Abrodo P, Díaz-Llorente D, Ríos-Lombardía N, Busto E, Gotor-Fernández V, Gutiérrez-Álvarez MD (2012) Characterization of hexacationic imidazolium ionic liquids as effective and highly stable gas chromatography stationary phases. J Sep Sci 35:273–279CrossRefGoogle Scholar
  148. 148.
    Lamberius GB, Crank JA, McGuigan ME, Kendler S, Armstrong DW, Sacks RD (2006) Rapid determination of complex mixtures by dual-column gas chromatography with a novel stationary phase combination and spectrometric detection. J Chromatogr A 1135:230–240CrossRefGoogle Scholar
  149. 149.
    Zhao Q, Anderson JL (2010) Highly selective GC stationary phases consisting of binary mixtures of polymeric ionic liquids. J Sep Sci 33:79–87CrossRefGoogle Scholar
  150. 150.
    González-Álvarez J, Blanco-Gomis D, Arias-Abrodo P, Diaz-Llorente P, Rios-Lombardia N, Busto E, Gotor-Fernandez V, Gutierrez-Alvarez (2012) Polymeric imidazolium ionic liquids as valuable stationary phases in gas chromatography: chemical synthesis and full characterization. Anal Chim Acta 721:173–181CrossRefGoogle Scholar
  151. 151.
    Hsieh YN, Ho WY, Horng RS, Huang PC, Hsu C-Y, Huang HH, Kuei CH (2007) Study of anion effects on separation phenomenon for the vinyloctylimidazolium based ionic liquid polymer stationary phases in GC. Chromatographia 66:607–611CrossRefGoogle Scholar
  152. 152.
    Hsieh YN, Horng RS, Ho WY, Huang PC, Hsu C-Y, Whang TJ, Kuei CH (2008) Characterizations for vinylimidazolium based ionic liquid polymer stationary phases for capillary gas chromatography. Chromatographia 67:413–420CrossRefGoogle Scholar
  153. 153.
    Hsieh Y-N, Kuei C-H, Chou Y-K, Liu C-C, Leu K-L, Yang T-H, Wang M-Y, Ho W-Y (2010) Facile synthesis of polymerized ionic liquids with high thermal stability. Tetrahedron Lett 51:3666–3669CrossRefGoogle Scholar
  154. 154.
    Ho W-Y, Hsieh Y-N, Lin W-C, Kao CL, Huang P-C, Yeh C-F, Pan C-Y, Kuei C-H (2010) High temperature imidazolium ionic polymer for gas chromatography. Anal Methods 2:455–457CrossRefGoogle Scholar
  155. 155.
    Wei Q, Qi ML, Yang HX, Fu RN (2011) Separation characteristics of ionic liquids grafted polymethylsiloxanes stationary phases for capillary GC. Chromatographia 74:717–724CrossRefGoogle Scholar
  156. 156.
    Sun X, Zhu Y, Wang P, Li J, Wu C, Xing J (2011) High temperature and highly selective stationary phases of ionic liquid bonded polysiloxanes for gas chromatography. J Chromatogr A 1218:833–841CrossRefGoogle Scholar
  157. 157.
    Sun X, Wu C, Xing J (2010) Ionic liquid-bonded polysiloxane as stationary phase for capillary gas chromatography. J Sep Sci 33:3159–3167CrossRefGoogle Scholar
  158. 158.
    Lantz AW, Pino V, Anderson JL, Armstrong DW (2006) Determination of solute partition behavior with room-temperature ionic liquid based micellar gas-liquid chromatography stationary phases using the pseudophase model. J Chromatogr A 1115:217–224CrossRefGoogle Scholar
  159. 159.
    Huang K-P, Misra TK, Wang G-B, Huang B-Y, Liu C-Y (2008) Novel stationary phase for complexation gas chromatography originating from ionic liquid and metallomesogen. J Chromatogr A 1215:177–184CrossRefGoogle Scholar
  160. 160.
    Yuan L-M, Ren C-X, Li L, Ai P, Yan Z-H, Zi M, Li Z-Y (2006) Single-walled carbon nanotubes used as stationary phase in GC. Anal Chem 78:6384–6390CrossRefGoogle Scholar
  161. 161.
    Zhao L, Ai P, Duan AH, Yuan LM (2011) Single-walled carbon nanotubes for improved enantioseparations on a chiral ionic liquid stationary phase in GC. Anal Bioanal Chem 399:143–147CrossRefGoogle Scholar
  162. 162.
    Tran CD, Challa S (2008) Fullerene-impregnated ionic liquid stationary phases for gas chromatography. Analyst 133:455–467CrossRefGoogle Scholar
  163. 163.
    Tran CD, Mejac I, Rebek J, Hooley RJ (2009) Gas chromatographic separation of isotopic molecules using a cavitand-impregnated ionic liquid stationary phase. Anal Chem 81:1244–1254CrossRefGoogle Scholar
  164. 164.
    Shi J-H, Jin Q-Q, Xu S-X (2012) Characterization of calixarene/ionic liquid mixture as gas chromatographic stationary phase through thermodynamic parameters and LSER. Chromatographia 75:779–787CrossRefGoogle Scholar
  165. 165.
    Ding J, Welton T, Armstrong DW (2004) Chiral ionic liquids as stationary phases in gas chromatography. Anal Chem 76:6819–6822CrossRefGoogle Scholar
  166. 166.
    Berthod A, He L, Armstrong DW (2001) Ionic liquids as stationary phase solvents for methylated cyclodextrins in gas chromatography. Chromatographia 53:63–68CrossRefGoogle Scholar
  167. 167.
    Huang K, Zhang XY, Armstrong DW (2010) Ionic cyclodextrins in ionic liquid matrices as chiral stationary phases for gas chromatography. J Chromatogr A 1217:5261–5273CrossRefGoogle Scholar
  168. 168.
    Sun XJ, Xu JK, Zhao XJ, Zhai YX, Xing J (2013) Study of chiral ionic liquid as stationary phases for GC. Chromatographia 76:1013–1019CrossRefGoogle Scholar
  169. 169.
    Shi JH, Su SX, Jia QQ, Yan XQ (2013) Characterization of a cellulose trisphenylcarbamate/1-octyl-3- methylimidazolium tetrafluoroborate mixture as GC stationary phase: thermodynamic parameters and LSER methodology. Chromatographia 76:1021–1029CrossRefGoogle Scholar
  170. 170.
    Sigma-Aldrich (2014) Title of material: ionic liquid capillary GC columns. Accessed 22 June 2014
  171. 171.
    Ragonese C, Sciarrone D, Tranchida PQ, Dugo P, Dugo G, Mondello L (2011) Evaluation of a medium-polarity ionic liquid stationary phase in the analysis of flavor and fragrance compounds. Anal Chem 83:7947–7954CrossRefGoogle Scholar
  172. 172.
    Cagliero C, Bicchi C, Cordero C, Liberto E, Sgorbini B, Rubiolo P (2012) Room temperature ionic liquids: new GC stationary phases with a novel selectivity for flavor and fragrance analyses. J Chromatogr A 1268:130–138CrossRefGoogle Scholar
  173. 173.
    Sciarrone D, Panto S, Rotondo A, Tedone L, Tranchida PQ, Dugo P, Mondello L (2013) Rapid collection and identification of a novel component from Clausena lansium Skeels leaves by means of three-dimensional preparative gas chromatography and nuclear magnetic resonance/infrared/mass spectrometric analysis. Anal Chim Acta 785:119–125CrossRefGoogle Scholar
  174. 174.
    Bianchi F, Dugheri S, Musci M, Bonacchi A, Salvadori E, Arcangeli G, Cupelli V, Lanciotti M, Masieri L, Serni S (2011) Fully automated solid-phase microextraction-fast gas chromatography-mass spectrometry method using a new ionic liquid column for high-throughput analysis of sarcosine and N-ethylglycine in human urine and urinary sediments. Anal Chim Acta 707:197–203CrossRefGoogle Scholar
  175. 175.
    Dutriez T, Borras J, Courtiade M, Thiébaut D, Dulot H, Bertoncini F, Hennion M-C (2011) Challenge in the speciation of nitrogen-containing compounds in heavy petroleum fractions by high temperature comprehensive two-dimensional gas chromatography. J Chromatogr A 1218:3190–3199CrossRefGoogle Scholar
  176. 176.
    Mahé L, Dutriez T, Courtiade M, Thiébaut D, Dulot H, Bertoncini F (2011) Global approach for the selection of high temperature comprehensive two-dimensional gas chromatography experimental conditions and quantitative analysis in regards to sulfur-containing compounds in heavy petroleum cuts. J Chromatogr A 1218:534–544CrossRefGoogle Scholar
  177. 177.
    Mogollon NG, Ribeiro FA, Lopez MM, Hantao LW, Poppi RJ, Augusto F (2013) Quantitative analysis of biodiesel in blends of biodiesel and conventional diesel by comprehensive two-dimensional gas chromatography and multivariate curve resolution. Anal Chim Acta 796:130–136CrossRefGoogle Scholar
  178. 178.
    Krupcik J, Gorovenko R, Spanik I, Bockova I, Sandra P, Armstrong DW (2013) On the use of ionic liquid capillary columns for analysis of aromatic hydrocarbons in low-boiling petrochemical products by one-dimensional and comprehensive two-dimensional gas chromatography. J Chromatogr A 1301:225–236CrossRefGoogle Scholar
  179. 179.
    Zapadlo M, Krupčík J, Kovalczuk T, Májek P, Špánik I, Armstrong DW, Sandra P (2011) Enhanced comprehensive two-dimensional gas chromatographic resolution of polychlorinated biphenyls on a non-polar polysiloxane and an ionic liquid column series. J Chromatogr A 1218:746–751CrossRefGoogle Scholar
  180. 180.
    Dominguez C, Reyes-Contreras C, Bayona JM (2012) Determination of benzothiazoles and benzotriazoles by using ionic liquid stationary phases in gas chromatography mass spectrometry. Application to their characterization in wastewaters. J Chromatogr A 1230:117–122CrossRefGoogle Scholar
  181. 181.
    Do L, Liljelind P, Zhang J, Haglund P (2013) Comprehensive profiling of 136 tetra- to octa-polychlorinated dibenzo-p-dioxins and dibenzofurans using ionic liquid columns and column combinations. J Chromatogr A 1311:157–169CrossRefGoogle Scholar
  182. 182.
    Reyes-Contreras C, Domínguez C, Bayona JM (2012) Determination of nitrosamines and caffeine metabolites in wastewaters using gas chromatography mass spectrometry and ionic liquid stationary phases. J Chromatogr A 1261:164–170CrossRefGoogle Scholar
  183. 183.
    Gu Q, David F, Lynen F, Vanormelingen P, Vyverman W, Rumpel K, Xu G, Sandra P (2011) Evaluation of ionic liquid stationary phases for one dimensional gas chromatography-mass spectrometry and comprehensive two dimensional gas chromatographic analyses of fatty acids in marine biota. J Chromatogr A 1218:3056–3063CrossRefGoogle Scholar
  184. 184.
    Destaillats F, Guitard M, Cruz-Hernandez C (2011) Identification of Δ6-monounsaturated fatty acids in human hair and nail samples by gas-chromatography-mass-spectrometry using ionic-liquid coated capillary column. J Chromatogr A 1218: 9384–9389CrossRefGoogle Scholar
  185. 185.
    Delmonte P, Fardin Kia AR, Kramer JK, Mossoba MM, Sidisky L, Rader JI (2011) Separation characteristics of fatty acid methyl esters using SLB-IL111, a new ionic liquid coated capillary gas chromatographic column. J Chromatogr A 1218:545–554CrossRefGoogle Scholar
  186. 186.
    Delmonte P, Fardin-Kia AR, Kramer JK, Mossoba MM, Sidisky L, Tyburczy C, Rader JI (2012) Evaluation of highly polar ionic liquid gas chromatographic column for the determination of the fatty acids in milk fat. J Chromatogr A 1233:137–146CrossRefGoogle Scholar
  187. 187.
    Zeng AX, Chin S-T, Nolvachai Y, Kulsing C, Sidisky LM, Marriott PJ (2013) Characterisation of capillary ionic liquid columns for gas chromatography-mass spectrometry analysis of fatty acid methyl esters. Anal Chim Acta 803:166–173CrossRefGoogle Scholar
  188. 188.
    Nosheen A, Mitrevski B, Bano A, Marriott PJ (2013) Fast comprehensive two-dimensional gas chromatography method for fatty acid methyl ester separation and quantification using dual ionic liquid columns. J Chromatogr A 1312:118–123CrossRefGoogle Scholar
  189. 189.
    Geiger M, Hogerton AL, Bowser MT (2012) Capillary electrophoresis. Anal Chem 84:577–596CrossRefGoogle Scholar
  190. 190.
    Xu Y, Wang E (2009) Ionic liquids used in and analyzed by capillary and microchip electrophoresis. J Chromatogr A 1216:4817–4823CrossRefGoogle Scholar
  191. 191.
    Wang Y, Deng QL, Fang GZ, Pan MF, Yu Y, Wang S (2012) A novel ionic liquid monolithic column and its separation properties in capillary electrochromatography. Anal Chim Acta 712:1–8CrossRefGoogle Scholar
  192. 192.
    Liu C-C, Deng Q-L, Fang G-Z, Liu H-L, Wu J-H, Pan M-F, Wang S (2013) Ionic liquids monolithic columns for protein separation in capillary electrochromatography. Anal Chim Acta 804:313–320CrossRefGoogle Scholar
  193. 193.
    Tian Y, Feng R, Liao LP, Liu HL, Chen H, Zeng ZR (2008) Dynamically coated silica monolith with ionic liquids for capillary electrochromatography. Electrophoresis 29:3153–3159CrossRefGoogle Scholar
  194. 194.
    Han HF, Li J, Wang XS, Liu X, Jiang SX (2011) Synthesis of ionic liquid-bonded organic-silica hybrid monolithic column for capillary electrochromatography. J Sep Sci 34:2323–2328Google Scholar
  195. 195.
    Li J, Han HF, Wang Q, Liu X, Jiang SX (2011) Polymeric ionic liquid-coated capillary for capillary electrophoresis. J Sep Sci 34:1555–1560CrossRefGoogle Scholar
  196. 196.
    Han H, Wang Q, Liu X, Jiang S (2012) Polymeric ionic liquid modified organic-silica hybrid monolithic column for capillary electrochromatography. J Chromatogr A 1246:9–14CrossRefGoogle Scholar
  197. 197.
    Yanes EG, Gratz SR, Baldwin MJ, Robison SE, Stalcup AM (2001) Capillary electrophoretic application of 1-alkyl-3-methylimidazolium-based ionic liquids. Anal Chem 73:3838–3844CrossRefGoogle Scholar
  198. 198.
    Qin WD, Wei HP, Li SFY (2003) 1,3-Dialkylimidazolium-based room-temperature ionic liquids as background electrolyte and coating material in aqueous capillary electrophoresis. J Chromatogr A 985:447–454CrossRefGoogle Scholar
  199. 199.
    Qin WD, Li SFY (2004) Determination of ammonium and metal ions by capillary electrophoresis- potential gradient detection using ionic liquid as background electrolyte and covalent coating reagent. J Chromatogr A 1048:253–256CrossRefGoogle Scholar
  200. 200.
    Jiang T-F, Gu Y-L, Liang B, Li J-B, Shi Y-P, Ou Q-Y (2003) Dynamically coating the capillary with 1-alkyl-3-methylimidazolium-based ionic liquids for separation of basic proteins by capillary electrophoresis. Anal Chim Acta 479:249–254CrossRefGoogle Scholar
  201. 201.
    Wu XP, Wei WP, Su QM, Xu LG, Chen GN (2008) Simultaneous separation of basic and acidic proteins using 1-butyl-3-methylimidazolium-based ion liquid as dynamic coating and background electrolyte in capillary electrophoresis. Electrophoresis 29:2356–2362CrossRefGoogle Scholar
  202. 202.
    Huang L, Lin JM, Yu L, Xu L, Chen G (2009) Improved simultaneous enantioseparation of β-agonists in CE using β-CD and ionic liquids. Electrophoresis 30:1030–1036CrossRefGoogle Scholar
  203. 203.
    Wang B, He J, Bianchi V, Shamsi SA (2009) Combined use of chiral ionic liquid and cyclodextrin for MEKC: part I. Simultaneous enantioseparation of anionic profens. Electrophoresis 30:2812–2819CrossRefGoogle Scholar
  204. 204.
    Zuo LH, Meng H, Wu JJ, Jiang Z, Xu SY, Guo XJ (2013) Combined use of ionic liquid and β-CD for enantioseparation of 12 pharmaceuticals using CE. J Sep Sci 36:517–523CrossRefGoogle Scholar
  205. 205.
    Cui Y, Ma XW, Zhao M, Jiang Z, Xu SY, Guo XJ (2013) Combined use of ionic liquid and hydroxypropyl-β-cyclodextrin for the enantioseparation of ten drugs by capillary electrophoresis. Chirality 25:409–414CrossRefGoogle Scholar
  206. 206.
    Zhao M, Cui Y, Yu J, Xu S, Guo X (2014) Combined use of hydroxypropyl-β-cyclodextrin and ionic liquids for the simultaneous enantioseparation of four azole antifungals by CE and a study of the synergistic effect. J Sep Sci 37:151–157CrossRefGoogle Scholar
  207. 207.
    Vaher M, Koel M, Kaljurand M (2002) Application of 1-alkyl-3-methylimidazolium-based ionic liquids in non-aqueous capillary electrophoresis. J Chromatogr A 979:27–32CrossRefGoogle Scholar
  208. 208.
    Vaher M, Koel M, Kaljurand M (2002) Ionic liquids as electrolytes for nonaqueous capillary electrophoresis. Electrophoresis 23:426–430CrossRefGoogle Scholar
  209. 209.
    François Y, Varenne A, Juillerat E, Servais A-C, Chiap P, Gareil P (2007) Nonaqueous capillary electrophoretic behavior of 2-aryl propionic acids in the presence of an achiral ionic liquid. A chemometric approach. J Chromatogr A 1138:268–275CrossRefGoogle Scholar
  210. 210.
    Vaher M, Koel M (2005) Specific background electrolytes for nonaqueous capillary electrophoresis. J Chromatogr A 1068:83–88CrossRefGoogle Scholar
  211. 211.
    Qin WD, Li SFY (2003) Electrophoresis of DNA in ionic liquid coated capillary. Analyst 128:37–41CrossRefGoogle Scholar
  212. 212.
    Qin WD, Li SFY (2002) An ionic liquid coating for determination of sildenafil and UK-103,320 in human serum by capillary zone electrophoresis-ion trap mass spectrometry. Electrophoresis 23:4110–4116CrossRefGoogle Scholar
  213. 213.
    Schnee VP, Palmer CP (2008) Cationic surfactants for micellar electrokinetic chromatography, 1: characterization of selectivity using the linear solvation energy relationships model. Electrophoresis 29:767–776CrossRefGoogle Scholar
  214. 214.
    Schnee VP, Baker GA, Rauk E, Palmer CP (2006) Electrokinetic chromatographic characterization of novel pseudo-phases based on N-alkyl-N-methylpyrrolidinium ionic liquid type surfactants. Electrophoresis 27:4141–4148CrossRefGoogle Scholar
  215. 215.
    Niu J, Qiu H, Li J, Liu X, Jiang S (2009) 1-Hexadecyl-3-methylimidazolium ionic liquid as a new cationic surfactant for separation of phenolic compounds by MEKC. Chromatographia 69:1093–1096CrossRefGoogle Scholar
  216. 216.
    Borissova M, Palk K, Koel M (2008) Micellar electrophoresis using ionic liquids. J Chromatogr A 1183:192–195CrossRefGoogle Scholar
  217. 217.
    Su H-L, Lan M-T, Hsieh Y-Z (2009) Using the cationic surfactants N-cetyl-N-methylpyrrolidinium bromide and 1-cetyl-3-methylimidazolium bromide for sweeping-micellar electrokinetic chromatography. J Chromatogr A 1216:5313–5319CrossRefGoogle Scholar
  218. 218.
    Rageh AH, Pyell U (2013) Imidazolium-based ionic liquid-type surfactant as pseudostationary phase in micellar electrokinetic chromatography of highly hydrophilic urinary nucleosides. J Chromatogr A 1316:135–146CrossRefGoogle Scholar
  219. 219.
    Mwongela SM, Siminialayi N, Fletcher KA, Warner IM (2007) A comparison of ionic liquids to molecular organic solvents as additives for chiral separations in micellar electrokinetic chromatography. J Sep Sci 30:1334–1342CrossRefGoogle Scholar
  220. 220.
    Tian K, Qi S, Cheng Y, Chen X, Hu Z (2005) Separation and determination of lignans from seeds of Schisandra species by micellar electrokinetic capillary chromatography using ionic liquid as modifier. J Chromatogr A 1078:181–187CrossRefGoogle Scholar
  221. 221.
    Mwongela SM, Numan A, Gill NL, Agbaria RZ, Warner IM (2003) Separation of achiral and chiral analytes using polymeric surfactants with ionic liquids as modifiers in micellar electrokinetic chromatography. Anal Chem 75:6089–6096CrossRefGoogle Scholar
  222. 222.
    El-Hady DA, Albishri HM, Rengarajan R, Wätzig H (2014) Use of short chain alkyl imidazolium ionic liquids for on-line stacking and sweeping of methotrexate, folinic acid and folic acid: their application to biological fluids. Electrophoresis 35:1956–1964CrossRefGoogle Scholar
  223. 223.
    Quirino JP, Anres P, Sirieix-Plenet J, Delaunay N, Gareil P (2011) Potential of long chain ionic liquids for on-line sample concentration techniques: application to micelle to solvent stacking. J Chromatogr A 1218:5718–5724CrossRefGoogle Scholar
  224. 224.
    Wang Q, Qiu H, Han H, Liu X, Jiang S (2012) Two-step stacking by sweeping and micelle to solvent stacking using a long-chain cationic ionic liquid surfactant. J Sep Sci 35:589–595CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • María J. Trujillo-Rodríguez
    • 1
  • Ana M. Afonso
    • 1
  • Verónica Pino
    • 1
  1. 1.Departamento de Química, Unidad Departamental de Química AnalíticaUniversidad de La Laguna (ULL)La Laguna (Tenerife)Spain

Personalised recommendations