Advertisement

Pareto Optimal Matchings in Many-to-Many Markets with Ties

  • Katarína Cechlárová
  • Pavlos Eirinakis
  • Tamás Fleiner
  • Dimitrios Magos
  • David F. Manlove
  • Ioannis Mourtos
  • Eva Oceľáková
  • Baharak RastegariEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9347)

Abstract

We consider Pareto-optimal matchings (POMs) in a many-to-many market of applicants and courses where applicants have preferences, which may include ties, over individual courses and lexicographic preferences over sets of courses. Since this is the most general setting examined so far in the literature, our work unifies and generalizes several known results. Specifically, we characterize POMs and introduce the Generalized Serial Dictatorship Mechanism with Ties (GSDT) that effectively handles ties via properties of network flows. We show that GSDT can generate all POMs using different priority orderings over the applicants, but it satisfies truthfulness only for certain such orderings. This shortcoming is not specific to our mechanism; we show that any mechanism generating all POMs in our setting is prone to strategic manipulation. This is in contrast to the one-to-one case (with or without ties), for which truthful mechanisms generating all POMs do exist.

Keywords

Pareto optimality Many-to-many matching Serial dictatorship Truthfulness 

References

  1. 1.
    Abdulkadiroǧlu, A., Sönmez, T.: Random serial dictatorship and the core from random endowments in house allocation problems. Econometrica 66(3), 689–701 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Abraham, D.J., Cechlárová, K., Manlove, D.F., Mehlhorn, K.: Pareto optimality in house allocation problems. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 3–15. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  3. 3.
    Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice-Hall Inc, Upper Saddle River (1993) zbMATHGoogle Scholar
  4. 4.
    Aziz, H., Brandt, F., Harrenstein, P.: Pareto optimality in coalition formation. Games Econ. Behav. 82, 562–581 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bogomolnaia, A., Moulin, H.: A new solution to the random assignment problem. J. Econ. Theor. 100(2), 295–328 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bogomolnaia, A., Moulin, H.: Random matching under dichotomous preferences. Econometrica 72(1), 257–279 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Budish, E., Cantillon, E.: The multi-unit assignment problem: theory and evidence from course allocation at harvard. Am. Econ. Rev. 102(5), 2237–2271 (2012)CrossRefGoogle Scholar
  8. 8.
    Cechlárová, K., Eirinakis, P., Fleiner, T., Magos, D., Manlove, D., Mourtos, I., Oceľáková, E., Rastegari, B.: Pareto optimal matchings in many-to-many markets with ties. Technical Report 1507.02866, 2015. Accessed on http://arxiv.org/abs/1507.02866
  9. 9.
    Cechlárová, K., Eirinakis, P., Fleiner, T., Magos, D., Mourtos, I., Potpinková, E.: Pareto optimality in many-to-many matching problems. Discrete Optim. 14, 160–169 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Fujita, E., Lesca, J., Sonoda, A., Todo, T., Yokoo, M.: A complexity approach for core-selecting exchange with multiple indivisible goods under lexicographic preferences. In: Proceedings of AAAI 2015 (2015)Google Scholar
  11. 11.
    Gärdenfors, P.: Assignment problem based on ordinal preferences. Manage. Sci. 20(3), 331–340 (1973)CrossRefzbMATHGoogle Scholar
  12. 12.
    Gigerenzer, G., Goldstein, D.G.: Reasoning the fast and frugal way: models of bounded rationality. Psychol. Rev. 103(4), 650–669 (1996)CrossRefGoogle Scholar
  13. 13.
    Hylland, A., Zeckhauser, R.: The efficient allocation of individuals to positions. J. Polit. Econ. 87(2), 293–314 (1979)CrossRefzbMATHGoogle Scholar
  14. 14.
    Klaus, B., Miyagawa, E.: Strategy-proofness, solidarity, and consistency for multiple assignment problems. Int. J. Game Theor. 30, 421–435 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Krysta, P., Manlove, D., Rastegari, B., Zhang, J.: Size versus truthfulness in the house allocation problem. Technical report 1404.5245. A shorter version appeared in the Proceedings of EC 2014 (2014)Google Scholar
  16. 16.
    Manlove, D.F.: Algorithmics of Matching Under Preferences. World Scientific, Singapore (2013)CrossRefzbMATHGoogle Scholar
  17. 17.
    Saban, D., Sethuraman, J.: The complexity of computing the random priority allocation matrix. In: Chen, Y., Immorlica, N. (eds.) WINE 2013. LNCS, vol. 8289, pp. 421–421. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  18. 18.
    Svensson, L.G.: Queue allocation of indivisible goods. Soc. Choice Welfare 11(4), 323–330 (1994)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Katarína Cechlárová
    • 1
  • Pavlos Eirinakis
    • 2
  • Tamás Fleiner
    • 3
  • Dimitrios Magos
    • 4
  • David F. Manlove
    • 5
  • Ioannis Mourtos
    • 2
  • Eva Oceľáková
    • 1
  • Baharak Rastegari
    • 5
    Email author
  1. 1.Institute of Mathematics, Faculty of ScienceP.J. S̆afárik UniversityKos̆iceSlovakia
  2. 2.Department of Management Science and TechnologyAthens University of Economics and BusinessAthensGreece
  3. 3.Department of Computer Science and Information TheoryBudapest University of Technology and Economics and MTA-ELTE Egerváry Research GroupBudapestHungary
  4. 4.Department of InformaticsTechnological Educational Institute of AthensEgaleoGreece
  5. 5.School of Computing ScienceUniversity of GlasgowGlasgowUK

Personalised recommendations