Advertisement

On Existence and Properties of Approximate Pure Nash Equilibria in Bandwidth Allocation Games

  • Maximilian DreesEmail author
  • Matthias Feldotto
  • Sören Riechers
  • Alexander Skopalik
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9347)

Abstract

In bandwidth allocation games (BAGs), the strategy of a player consists of various demands on different resources. The player’s utility is at most the sum of these demands, provided they are fully satisfied. Every resource has a limited capacity and if it is exceeded by the total demand, it has to be split between the players. Since these games generally do not have pure Nash equilibria, we consider approximate pure Nash equilibria, in which no player can prove her utility by more than some fixed factor \({\alpha }\) through unilateral strategy changes. There is a threshold \({\alpha }_{\delta }\) (where \(\delta \) is a parameter that limits the demand of each player on a specific resource) such that \({\alpha }\)-approximate pure Nash equilibria always exist for \(\alpha \ge \alpha _\delta \), but not for \(\alpha < \alpha _\delta \). We give both upper and lower bounds on this threshold \(\alpha _\delta \) and show that the corresponding decision problem is \(\mathsf{NP}\)-hard. We also show that the \(\alpha \)-approximate price of anarchy for BAGs is \(\alpha +1\). For a restricted version of the game, where demands of players only differ slightly from each other (e.g. symmetric games), we show that approximate Nash equilibria can be reached (and thus also be computed) in polynomial time using the best-response dynamic. Finally, we show that a broader class of utility-maximization games (which includes BAGs) converges quickly towards states whose social welfare is close to the optimum.

Keywords

Nash Equilibrium Strategy Profile Strategy Space Congestion Game Potential Game 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ackermann, H., Röglin, H., Vöcking, B.: Pure Nash equilibria in player-specific and weighted congestion games. Theoret. Comput. Sci. 410(17), 1552–1563 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ackermann, H., Skopalik, A.: Complexity of pure Nash equilibria in player-specific network congestion games. Internet Math. 5(4), 323–342 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Aland, S., Dumrauf, D., Gairing, M., Monien, B., Schoppmann, F.: Exact price of anarchy for polynomial congestion games. SIAM J. Comput. 40(5), 1211–1233 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Anshelevich, E., Postl, J., Wexler, T.: Assignment games with conflicts: price of total anarchy and convergence results via semi-smoothness. In: CoRR abs/1304.5149 (2013)Google Scholar
  5. 5.
    Augustine, J., Chen, N., Elkind, E., Fanelli, A., Gravin, N., Shiryaev, D.: Dynamics of profit-sharing games. In: Proceedings of IJCAI, pp. 37–42. IJCAI/AAAI (2011)Google Scholar
  6. 6.
    Awerbuch, B., Azar, Y., Epstein, A.: The price of routing unsplittable flow. SIAM J. Comput. 42(1), 160–177 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Awerbuch, B., Azar, Y., Epstein, A., Mirrokni, V.S., Skopalik, A.: Fast convergence to nearly optimal solutions in potential games. In: Proceedings of EC, pp. 264–273. ACM (2008)Google Scholar
  8. 8.
    Bhawalkar, K., Gairing, M., Roughgarden, T.: Weighted congestion games: the price of anarchy, universal worst-case examples, and tightness. ACM TEAC 2(4), 14 (2014)zbMATHGoogle Scholar
  9. 9.
    Brinkmann, A., Kling, P., Meyer auf der Heide, F., Nagel, L., Riechers, S., Süß, T.: Scheduling shared continuous resources on many-cores. In: Proceedings of 26th ACM SPAA, pp. 128–137. ACM, New York (2014)Google Scholar
  10. 10.
    Caragiannis, I., Fanelli, A., Gravin, N., Skopalik, A.: Efficient computation of approximate pure Nash equilibria in congestion games. In: 52nd FOCS, pp. 532–541. IEEE Computer Society (2011)Google Scholar
  11. 11.
    Caragiannis, I., Fanelli, A., Gravin, N., Skopalik, A.: Approximate pure Nash equilibria in weighted congestion games: existence, efficient computation, and structure. In: Proceedings of 13th EC, pp. 284–301. ACM (2012)Google Scholar
  12. 12.
    Chen, H., Roughgarden, T.: Network Design with Weighted Players. Theory Comput. Syst. 45(2), 302–324 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Chien, S., Sinclair, A.: Convergence to approximate Nash equilibria in congestion games. Games Econ. Behav. 71(2), 315–327 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Christodoulou, G., Koutsoupias, E.: The price of anarchy of finite congestion games. In: Proceedings of 37th STOC, pp. 67–73. ACM (2005)Google Scholar
  15. 15.
    Christodoulou, G., Koutsoupias, E., Spirakis, P.G.: On the performance of approximate equilibria in congestion games. Algorithmica 61(1), 116–140 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Coffman, K., Odlyzko, A.: Internet growth: is there a moores law for data traffic? In: Panos, J.A., Mauricio, M.P., Resende, G.C. (eds.) Handbook of Massive Data Sets, Massive Computing, vol. 4, pp. 47–93. Springer, New York (2002)CrossRefGoogle Scholar
  17. 17.
    Drees, M., Feldotto, M., Riechers, S., Skopalik, A.: On existence and properties of approximate pure nash equilibria in bandwidth allocation games. In: CoRR abs/1507.02908 (2015)Google Scholar
  18. 18.
    Drees, M., Riechers, S., Skopalik, A.: Budget-restricted utility games with ordered strategic decisions. In: Lavi, R. (ed.) SAGT 2014. LNCS, vol. 8768, pp. 110–121. Springer, Heidelberg (2014) Google Scholar
  19. 19.
    Dunkel, J., Schulz, A.S.: On the complexity of pure-strategy nash equilibria in congestion and local-effect games. Math. Oper. Res. 33(4), 851–868 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Fabrikant, A., Papadimitriou, C.H., Talwar, K.: The complexity of pure Nash equilibria. In: Proceedings of 36th STOC, pp. 604–612. ACM (2004)Google Scholar
  21. 21.
    Feldotto, M., Gairing, M., Skopalik, A.: Bounding the potential function in congestion games and approximate pure Nash equilibria. In: Liu, T.-Y., Qi, Q., Ye, Y. (eds.) WINE 2014. LNCS, vol. 8877, pp. 30–43. Springer, Heidelberg (2014) Google Scholar
  22. 22.
    Goemans, M.X., Li, L., Mirrokni, V.S., Thottan, M.: Market sharing games applied to content distribution in Ad-Hoc networks. IEEE J. Sel. Areas Commun. 24(5), 1020–1033 (2006)CrossRefGoogle Scholar
  23. 23.
    Hansknecht, C., Klimm, M., Skopalik, A.: Approximate pure Nash equilibria in weighted congestion games. In: APPROX/RANDOM, pp. 242–257 (2014)Google Scholar
  24. 24.
    Harks, T., Klimm, M.: On the existence of pure nash equilibria in weighted congestion games. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 79–89. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  25. 25.
    Harks, T., Klimm, M.: Congestion games with variable demands. In: Proceedings of 13th TARK, pp. 111–120. ACM (2011)Google Scholar
  26. 26.
    Lucier, B., Leme, R.P.: GSP auctions with correlated types. In: Proceedings of 12th EC, pp. 71–80. ACM (2011)Google Scholar
  27. 27.
    Mavronicolas, M., Milchtaich, I., Monien, B., Tiemann, K.: Congestion games with player-specific constants. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 633–644. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  28. 28.
    Milchtaich, I.: Congestion games with player-specific payoff functions. Games Econ. Behav. 13(1), 111–124 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Monderer, D., Shapley, L.S.: Potential games. Games Econ. Behav. 14(1), 124–143 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Rosenthal, R.W.: A class of games possessing pure-strategy Nash equilibria. Int. J. Game Theory 2(1), 65–67 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Roughgarden, T.: Intrinsic robustness of the price of anarchy. In: Proceedings of 41st STOC, pp. 513–522. ACM (2009)Google Scholar
  32. 32.
    Skopalik, A., Vöcking, B.: Inapproximability of pure nash equilibria. In: Proceedings of 40th STOC, pp. 355–364. ACM (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Maximilian Drees
    • 1
    Email author
  • Matthias Feldotto
    • 1
  • Sören Riechers
    • 1
  • Alexander Skopalik
    • 1
  1. 1.Heinz Nixdorf Institute & Department of Computer ScienceUniversity of PaderbornPaderbornGermany

Personalised recommendations