The Combinatorial World (of Auctions) According to GARP

  • Shant BoodaghiansEmail author
  • Adrian Vetta
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9347)


Revealed preference techniques are used to test whether a data set is compatible with rational behaviour. They are also incorporated as constraints in mechanism design to encourage truthful behaviour in applications such as combinatorial auctions. In the auction setting, we present an efficient combinatorial algorithm to find a virtual valuation function with the optimal (additive) rationality guarantee. Moreover, we show that there exists such a valuation function that both is individually rational and is minimum (that is, it is component-wise dominated by any other individually rational, virtual valuation function that approximately fits the data). Similarly, given upper bound constraints on the valuation function, we show how to fit the maximum virtual valuation function with the optimal additive rationality guarantee. In practice, revealed preference bidding constraints are very demanding. We explain how approximate rationality can be used to create relaxed revealed preference constraints in an auction. We then show how combinatorial methods can be used to implement these relaxed constraints. Worst/best-case welfare guarantees that result from the use of such mechanisms can be quantified via the minimum/maximum virtual valuation function.


  1. 1.
    Afriat, S.: The construction of a utility function from expenditure data. Int. Econ. Rev. 8, 67–77 (1967)CrossRefzbMATHGoogle Scholar
  2. 2.
    Akerlof, G., Yellen, J.: Can small deviations from rationality make significant differences to economic equilibria? Am. Econ. Rev. 75(4), 708–720 (1985)Google Scholar
  3. 3.
    Ausubel, L., Baranov, O.: Market design and the evolution of the combinatorial clock auction. Am. Econ. Rev. 104(5), 446–451 (2014)CrossRefGoogle Scholar
  4. 4.
    Ausubel, L., Cramton, P., Milgrom, P.: The clock-proxy auction: a practical combinatorial auction design. In: Cramton, P., Shoham, Y., Steinberg, R. (eds.) Combinatorial Auctions, pp. 115–138. MIT Press, Cambridge (2006)Google Scholar
  5. 5.
    Brown, D., Echenique, F.: Supermodularity and preferences. J. Econ. Theor. 144(3), 1004–1014 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cramton, P.: Spectrum auction design. Rev. Ind. Organ. 42(2), 161–190 (2013)CrossRefGoogle Scholar
  7. 7.
    Echenique, F., Golovin, D., Wierman, A.: A revealed preference approach to computational complexity in economics. In: Proceedings of EC, pp 101–110 (2011)Google Scholar
  8. 8.
    Edelman, B., Ostrovsky, M., Schwarz, M.: Internet advertising and the generalized second-price auction: selling billions of dollars worth of keywords. Am. Econ. Rev. 97(1), 242–259 (2007)CrossRefGoogle Scholar
  9. 9.
    Fostel, A., Scarf, H., Todd, M.: Two new proofs of Afriat’s theorem. Econ. Theor. 24, 211–219 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Gigerenzer, G., Selten, R. (eds.): Bounded Rationality: the Adaptive Toolbox. MIT Press, Cambridge (2001)Google Scholar
  11. 11.
    Gross, J.: Testing data for consistency with revealed preference. Rev. Econ. Stat. 77(4), 701–710 (1995)CrossRefGoogle Scholar
  12. 12.
    Gul, F., Stacchetti, E.: Walrasian equilibrium with gross substitutes. J. Econ. Theor. 87, 95–124 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Harsha, P., Barnhart, C., Parkes, D., Zhang, H.: Strong activity rules for iterative combinatorial auctions. Comput. Oper. Res. 37(7), 1271–1284 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Houthakker, H.: Revealed preference and the utility function. Economica New Ser. 17(66), 159–174 (1950)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Karp, R.: A characterization of the minimum cycle mean in a digraph. Discrete Math. 23(3), 309–311 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kelso, A., Crawford, P.: Job matching, coalition formation, and gross substitutes. Econometrica 50(6), 1483–1504 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Milgrom, P.: Putting auction theory to work: the simultaneous ascending auction. J. Polit. Econ. 108, 245–272 (2000)CrossRefGoogle Scholar
  18. 18.
    Samuelson, P.: A note on the pure theory of consumer’s behavior. Economica 5(17), 61–71 (1938)CrossRefGoogle Scholar
  19. 19.
    Samuelson, P.: Consumption theory in terms of revealed preference. Economica 15(60), 243–253 (1948)CrossRefGoogle Scholar
  20. 20.
    Varian, H.: Revealed preference. In: Szenberg, M., Ramrattand, L., Gottesman, A. (eds.) Samulesonian Economics and the \(21\)st Century, pp. 99–115. Oxford University Press, New York (2005)Google Scholar
  21. 21.
    Varian, H.: The nonparametric approach to demand analysis. Econometrica 50(4), 945–973 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Varian, H.: Goodness-of-fit in optimizing models. J. Econometrics 46, 125–140 (1990)CrossRefGoogle Scholar
  23. 23.
    Varian, H.: Position auctions. Int. J. Ind. Organ. 25(6), 1163–1178 (2007)CrossRefGoogle Scholar
  24. 24.
    Varian, H.: Revealed preference and its applications. Working paper (2011)Google Scholar
  25. 25.
    Vohra, R.: Mechanism Design: A Linear Programming Approach. Cambridge University Press, Cambridge (2011)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsMcGill UniversityMontrealCanada
  2. 2.Department of Mathematics and Statistics, School of Computer ScienceMcGill UniversityMontrealCanada

Personalised recommendations