Advertisement

Trip-Based Public Transit Routing

  • Sascha WittEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9294)

Abstract

We study the problem of computing all Pareto-optimal journeys in a public transit network regarding the two criteria of arrival time and number of transfers taken. We take a novel approach, focusing on trips and transfers between them, allowing fine-grained modeling. Our experiments on the metropolitan network of London show that the algorithm computes full 24-hour profiles in 70ms after a preprocessing phase of 30s, allowing fast queries in dynamic scenarios.

Keywords

Arrival Time Query Time Public Transit Early Arrival Time Public Transportation Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bast, H., Carlsson, E., Eigenwillig, A., Geisberger, R., Harrelson, C., Raychev, V., Viger, F.: Fast Routing in Very Large Public Transportation Networks Using Transfer Patterns. In: de Berg, M., Meyer, U. (eds.) ESA 2010, Part I. LNCS, vol. 6346, pp. 290–301. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Bast, H., Delling, D., Goldberg, A., Müller-Hannemann, M., Pajor, T., Sanders, P., Wagner, D., Werneck, R.F.: Route Planning in Transportation Networks. ArXiv e-prints arXiv:1504.05140 [cs.DS] (Apr 2015)Google Scholar
  3. 3.
    Bast, H., Storandt, S.: Frequency-based Search for Public Transit. In: SIGSPATIAL, pp. 13–22. ACM, New York (2014)Google Scholar
  4. 4.
    Berger, A., Delling, D., Gebhardt, A., Müller-Hannemann, M.: Accelerating Time-Dependent Multi-Criteria Timetable Information is Harder Than Expected. In: ATMOS 2009. OASIcs (2009)Google Scholar
  5. 5.
    Brodal, G.S., Jacob, R.: Time-dependent networks as models to achieve fast exact time-table queries. Electronic Notes in Theor. Computer Science 92, 3–15 (2004)CrossRefzbMATHGoogle Scholar
  6. 6.
    Cionini, A., D’Angelo, G., D’Emidio, M., Frigioni, D., Giannakopoulou, K., Paraskevopoulos, A., Zaroliagis, C.: Engineering Graph-Based Models for Dynamic Timetable Information Systems. In: ATMOS 2014. OASIcs (2014)Google Scholar
  7. 7.
    Dean, B.C.: Continuous-Time Dynamic Shortest Path Algorithms. Master’s thesis, Massachusetts Institute of Technology (1999)Google Scholar
  8. 8.
    Delling, D., Dibbelt, J., Pajor, T., Werneck, R.F.: Public Transit Labeling. In: Bampis, E. (ed.) SEA 2015. LNCS, vol. 9125, pp. 273–285. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  9. 9.
    Delling, D., Katz, B., Pajor, T.: Parallel Computation of Best Connections in Public Transportation Networks. JEA 17, 4.4:4.1–4.4:4.26 (2012)Google Scholar
  10. 10.
    Delling, D., Pajor, T., Werneck, R.F.: Round-Based Public Transit Routing. Transportation Science, advance online publication (2012)Google Scholar
  11. 11.
    Dibbelt, J., Pajor, T., Strasser, B., Wagner, D.: Intriguingly Simple and Fast Transit Routing. In: Bonifaci, V., Demetrescu, C., Marchetti-Spaccamela, A. (eds.) SEA 2013. LNCS, vol. 7933, pp. 43–54. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Geisberger, R.: Contraction of Timetable Networks with Realistic Transfers. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 71–82. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Hansen, P.: Bicriterion Path Problems. In: Multiple Criteria Decision Making Theory and Application. LNEMS, vol. 177, pp. 109–127. Springer, Heidelberg (1980)CrossRefGoogle Scholar
  14. 14.
    Müller-Hannemann, M., Schulz, F., Wagner, D., Zaroliagis, C.: Timetable Information: Models and Algorithms. In: Geraets, F., Kroon, L.G., Schoebel, A., Wagner, D., Zaroliagis, C.D. (eds.) Railway Optimization 2004. LNCS, vol. 4359, pp. 67–90. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Müller-Hannemann, M., Weihe, K.: On the cardinality of the Pareto set in bicriteria shortest path problems. Annals of Operations Research 147(1), 269–286 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Pyrga, E., Schulz, F., Wagner, D., Zaroliagis, C.: Efficient Models for Timetable Information in Public Transportation Systems. JEA 12, 2.4:1–2.4:39 (2008)Google Scholar
  17. 17.
    Strasser, B., Wagner, D.: Connection Scan Accelerated. In: ALENEX 2014, pp. 125–137 (2014)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations