Algorithms - ESA 2015 pp 1025-1036 | Cite as
Trip-Based Public Transit Routing
Conference paper
First Online:
- 6 Citations
- 1.7k Downloads
Abstract
We study the problem of computing all Pareto-optimal journeys in a public transit network regarding the two criteria of arrival time and number of transfers taken. We take a novel approach, focusing on trips and transfers between them, allowing fine-grained modeling. Our experiments on the metropolitan network of London show that the algorithm computes full 24-hour profiles in 70ms after a preprocessing phase of 30s, allowing fast queries in dynamic scenarios.
Keywords
Arrival Time Query Time Public Transit Early Arrival Time Public Transportation Network
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.Bast, H., Carlsson, E., Eigenwillig, A., Geisberger, R., Harrelson, C., Raychev, V., Viger, F.: Fast Routing in Very Large Public Transportation Networks Using Transfer Patterns. In: de Berg, M., Meyer, U. (eds.) ESA 2010, Part I. LNCS, vol. 6346, pp. 290–301. Springer, Heidelberg (2010)CrossRefGoogle Scholar
- 2.Bast, H., Delling, D., Goldberg, A., Müller-Hannemann, M., Pajor, T., Sanders, P., Wagner, D., Werneck, R.F.: Route Planning in Transportation Networks. ArXiv e-prints arXiv:1504.05140 [cs.DS] (Apr 2015)Google Scholar
- 3.Bast, H., Storandt, S.: Frequency-based Search for Public Transit. In: SIGSPATIAL, pp. 13–22. ACM, New York (2014)Google Scholar
- 4.Berger, A., Delling, D., Gebhardt, A., Müller-Hannemann, M.: Accelerating Time-Dependent Multi-Criteria Timetable Information is Harder Than Expected. In: ATMOS 2009. OASIcs (2009)Google Scholar
- 5.Brodal, G.S., Jacob, R.: Time-dependent networks as models to achieve fast exact time-table queries. Electronic Notes in Theor. Computer Science 92, 3–15 (2004)CrossRefzbMATHGoogle Scholar
- 6.Cionini, A., D’Angelo, G., D’Emidio, M., Frigioni, D., Giannakopoulou, K., Paraskevopoulos, A., Zaroliagis, C.: Engineering Graph-Based Models for Dynamic Timetable Information Systems. In: ATMOS 2014. OASIcs (2014)Google Scholar
- 7.Dean, B.C.: Continuous-Time Dynamic Shortest Path Algorithms. Master’s thesis, Massachusetts Institute of Technology (1999)Google Scholar
- 8.Delling, D., Dibbelt, J., Pajor, T., Werneck, R.F.: Public Transit Labeling. In: Bampis, E. (ed.) SEA 2015. LNCS, vol. 9125, pp. 273–285. Springer, Heidelberg (2015)CrossRefGoogle Scholar
- 9.Delling, D., Katz, B., Pajor, T.: Parallel Computation of Best Connections in Public Transportation Networks. JEA 17, 4.4:4.1–4.4:4.26 (2012)Google Scholar
- 10.Delling, D., Pajor, T., Werneck, R.F.: Round-Based Public Transit Routing. Transportation Science, advance online publication (2012)Google Scholar
- 11.Dibbelt, J., Pajor, T., Strasser, B., Wagner, D.: Intriguingly Simple and Fast Transit Routing. In: Bonifaci, V., Demetrescu, C., Marchetti-Spaccamela, A. (eds.) SEA 2013. LNCS, vol. 7933, pp. 43–54. Springer, Heidelberg (2013)CrossRefGoogle Scholar
- 12.Geisberger, R.: Contraction of Timetable Networks with Realistic Transfers. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 71–82. Springer, Heidelberg (2010)CrossRefGoogle Scholar
- 13.Hansen, P.: Bicriterion Path Problems. In: Multiple Criteria Decision Making Theory and Application. LNEMS, vol. 177, pp. 109–127. Springer, Heidelberg (1980)CrossRefGoogle Scholar
- 14.Müller-Hannemann, M., Schulz, F., Wagner, D., Zaroliagis, C.: Timetable Information: Models and Algorithms. In: Geraets, F., Kroon, L.G., Schoebel, A., Wagner, D., Zaroliagis, C.D. (eds.) Railway Optimization 2004. LNCS, vol. 4359, pp. 67–90. Springer, Heidelberg (2007)CrossRefGoogle Scholar
- 15.Müller-Hannemann, M., Weihe, K.: On the cardinality of the Pareto set in bicriteria shortest path problems. Annals of Operations Research 147(1), 269–286 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
- 16.Pyrga, E., Schulz, F., Wagner, D., Zaroliagis, C.: Efficient Models for Timetable Information in Public Transportation Systems. JEA 12, 2.4:1–2.4:39 (2008)Google Scholar
- 17.Strasser, B., Wagner, D.: Connection Scan Accelerated. In: ALENEX 2014, pp. 125–137 (2014)Google Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2015