Faster Fully-Dynamic Minimum Spanning Forest

  • Jacob Holm
  • Eva Rotenberg
  • Christian Wulff-Nilsen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9294)


We give a new data structure for the fully-dynamic minimum spanning forest problem in simple graphs. Edge updates are supported in O(log4n/loglogn) expected amortized time per operation, improving the O(log4n) amortized bound of Holm et al. (STOC ’98, JACM ’01). We also provide a deterministic data structure with amortized update time O(log4n logloglogn/loglogn). We assume the Word-RAM model with standard instructions.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alstrup, S., Holm, J., de Lichtenberg, K., Thorup, M.: Maintaining information in fully dynamic trees with top trees. ACM Trans. Algorithms 1(2), 243–264 (2005)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Andersson, A., Hagerup, T., Nilsson, S., Raman, R.: Sorting in linear time? Journal of Computer and System Sciences 57(1), 74–93 (1998), See also STOC 1995Google Scholar
  3. 3.
    Eppstein, D., Galil, Z., Italiano, G.F., Nissenzweig, A.: Sparsification - a technique for speeding up dynamic graph algorithms. J. ACM 44(5), 669–696 (1997)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Frederickson, G.N.: Data structures for on-line updating of minimum spanning trees, with applications. SIAM Journal on Computing 14(4), 781–798 (1985), See also STOC 1983Google Scholar
  5. 5.
    Han, Y.: Deterministic sorting in O(nloglogn) time and linear space. J. Algorithms 50(1), 96–105 (2004), See also STOC 2002Google Scholar
  6. 6.
    Henzinger, M.R., King, V.: Fully dynamic 2-edge connectivity algorithm in polylogarithmic time per operation (1997)Google Scholar
  7. 7.
    Henzinger, M.R., King, V.: Randomized fully dynamic graph algorithms with polylogarithmic time per operation. J. ACM 46(4), 502–516 (1999), See also STOC 1995Google Scholar
  8. 8.
    Henzinger, M.R., Thorup, M.: Sampling to provide or to bound: With applications to fully dynamic graph algorithms. Random Structures and Algorithms 11(4), 369–379 (1997), See also ICALP 1996Google Scholar
  9. 9.
    Holm, J., de Lichtenberg, K., Thorup, M.: Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. J. ACM 48(4), 723–760 (2001), See also STOC 1998Google Scholar
  10. 10.
    Pǎtraşcu, M., Demaine, E.D.: Lower bounds for dynamic connectivity. In: Proc. 36th ACM Symposium on Theory of Computing (STOC), pp. 546–553 (2004)Google Scholar
  11. 11.
    Raman, R.: Fast algorithms for shortest paths and sorting (1996)Google Scholar
  12. 12.
    Thorup, M.: Near-optimal fully-dynamic graph connectivity. In: Proc. 32nd ACM Symposium on Theory of Computing (STOC), pp. 343–350 (2000)Google Scholar
  13. 13.
    Thorup, M.: Randomized sorting in O(nloglogn) time and linear space using addition, shift, and bit-wise boolean operations. J. Algorithms 42(2), 205–230 (2002), See also SODA 1997Google Scholar
  14. 14.
    Wulff-Nilsen, C.: Faster deterministic fully-dynamic graph connectivity. In: SODA, pp. 1757–1769 (2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Jacob Holm
    • 1
  • Eva Rotenberg
    • 1
  • Christian Wulff-Nilsen
    • 1
  1. 1.Department of Computer ScienceUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations