Fast Algorithms for Parameterized Problems with Relaxed Disjointness Constraints

  • Ariel Gabizon
  • Daniel Lokshtanov
  • Michał Pilipczuk
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9294)

Abstract

In this paper we consider generalized versions of four well-studied problems in parameterized complexity and exact exponential time algorithms: k-Path, Set Packing, Multilinear Monomial Testing and Hamiltonian Path. The generalization is in every case obtained by introducing a relaxation parameter, which relaxes the constraints on feasible solutions. For example, the k-Path problem is generalized to r-Simple k-Path where the task is to find a walk of length k that never visits any vertex more than r times. This problem was first considered by Abasi et al. [1]. Hamiltonian Path is generalized to Degree Bounded Spanning Tree, where the input is a graph G and integer d, and the task is to find a spanning tree T of G such that every vertex has degree at most d in T.

The generalized problems can easily be shown to be NP-complete for every fixed value of the relaxation parameter. On the other hand, we give algorithms for the generalized problems whose worst-case running time (a) matches the running time of the best algorithms for the original problems up to constants in the exponent, and (b) improves significantly as the relaxation parameter increases. For example, we give a deterministic algorithm with running time \(O^{*}(2^{O(k\frac{\log r}{r})})\) for r-Simple k-Path matching up to a constant in the exponent the randomized algorithm of Abasi et al. [1], and a randomized algorithm with running time \(O^{*}(2^{O(n\frac{\log d}{d})})\) for Degree Bounded Spanning Tree improving upon an O(2n + o(n)) algorithm of Fomin et al. [8].

On the way to obtain our results we generalize the notion of representative sets to multisets, and give an efficient algorithm to compute such representative sets. Both the generalization of representative sets to multisets and the algorithm to compute them may be of independent interest.

Keywords

Exact Algorithm Packing Problem Parameterized Problem Relaxation Parameter Hamiltonian Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abasi, H., Bshouty, N.H., Gabizon, A., Haramaty, E.: On r-Simple k-Path. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part II. LNCS, vol. 8635, pp. 1–12. Springer, Heidelberg (2014)Google Scholar
  2. 2.
    Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Narrow sieves for parameterized paths and packings. CoRR, abs/1007.1161 (2010)Google Scholar
  3. 3.
    Bshouty, N.H.: Testers and their applications. In: ITCS 2014, pp. 327–352 (2014)Google Scholar
  4. 4.
    Cygan, M., Fomin, F.V., Lokshtanov, D., Kowalik, L., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer (in press, 2015)Google Scholar
  5. 5.
    Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer (2013)Google Scholar
  6. 6.
    Fernau, H., López-Ortiz, A., Romero, J.: Kernelization algorithms for packing problems allowing overlaps. In: Jain, R., Jain, S., Stephan, F. (eds.) TAMC 2015. LNCS, vol. 9076, pp. 415–427. Springer, Heidelberg (2015)Google Scholar
  7. 7.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series. Springer, Berlin (2006)MATHGoogle Scholar
  8. 8.
    Fomin, F.V., Grandoni, F., Lokshtanov, D., Saurabh, S.: Sharp separation and applications to exact and parameterized algorithms. Algorithmica 63(3), 692–706 (2012)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Fomin, F.V., Lokshtanov, D., Panolan, F., Saurabh, S.: Representative sets of product families. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 443–454. Springer, Heidelberg (2014)Google Scholar
  10. 10.
    Fomin, F.V., Lokshtanov, D., Saurabh, S.: Efficient computation of representative sets with applications in parameterized and exact algorithms. In: SODA 2014, pp. 142–151 (2014)Google Scholar
  11. 11.
    Fürer, M., Raghavachari, B.: Approximating the minimum-degree Steiner Tree to within one of optimal. J. Algorithms 17(3), 409–423 (1994)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Gabizon, A., Lokshtanov, D., Pilipczuk, M.: Fast algorithms for parameterized problems with relaxed disjointness constraints. CoRR, abs/1411.6756 (2014)Google Scholar
  13. 13.
    Goemans, M.X.: Minimum bounded degree spanning trees. In: FOCS 2006, pp. 273–282 (2006)Google Scholar
  14. 14.
    Koutis, I.: Faster algebraic algorithms for path and packing problems. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 575–586. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Linial, N., Luby, M., Saks, M.E., Zuckerman, D.: Efficient construction of a small hitting set for combinatorial rectangles in high dimension. Combinatorica 17(2), 215–234 (1997)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Monien, B.: How to find long paths efficiently. In: Analysis and Design of Algorithms for Combinatorial Problems, Udine. North-Holland Math. Stud., vol. 109, pp. 239–254. North-Holland, Amsterdam (1982)CrossRefGoogle Scholar
  17. 17.
    Niedermeier, R.: Invitation to fixed-parameter algorithms. Oxford Lecture Series in Mathematics and its Applications, vol. 31, p. 300. Oxford University Press, Oxford (2006)CrossRefMATHGoogle Scholar
  18. 18.
    Pinter, R.Y., Shachnai, H., Zehavi, M.: Deterministic parameterized algorithms for the graph motif problem. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part II. LNCS, vol. 8635, pp. 589–600. Springer, Heidelberg (2014)Google Scholar
  19. 19.
    Shachnai, H., Zehavi, M.: Representative families: A unified tradeoff-based approach. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 786–797. Springer, Heidelberg (2014)Google Scholar
  20. 20.
    Singh, M., Lau, L.C.: Approximating minimum bounded degree spanning trees to within one of optimal. J. ACM 62(1), 1–1 (2015)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Tutte, W.T.: Graph Theory. Cambridge University Press (2001)Google Scholar
  22. 22.
    Williams, R.: Finding paths of length k in O *(2k) time. Inf. Process. Lett. 109(6), 315–318 (2009)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Zehavi, M.: Deterministic parameterized algorithms for matching and packing problems. CoRR, abs/1311.0484 (2013)Google Scholar
  24. 24.
    Zehavi, M.: Solving parameterized problems by mixing color coding-related techniques. CoRR, abs/1410.5062 (2014)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ariel Gabizon
    • 1
  • Daniel Lokshtanov
    • 2
  • Michał Pilipczuk
    • 3
  1. 1.Department of Computer ScienceTechnionHaifaIsrael
  2. 2.Department of InformaticsUniversity of BergenBergenNorway
  3. 3.Institute of InformaticsUniversity of WarsawWarsawPoland

Personalised recommendations