Approximating Minimum-Area Rectangular and Convex Containers for Packing Convex Polygons

  • Helmut Alt
  • Mark de Berg
  • Christian Knauer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9294)


We investigate the problem of finding a minimum-area container for the disjoint packing of a set of convex polygons by translations. In particular, we consider axis-parallel rectangles or arbitrary convex sets as containers. For both optimization problems which are NP-hard we develop efficient constant factor approximation algorithms.


Convex Polygon Left Edge Approximation Factor Height Class Strip Packing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahn, H.-K., Alt, H., Bae, S.W., Park, D.: Bundling Three Convex Polygons to Minimize Area or Perimeter. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013. LNCS, vol. 8037, pp. 13–24. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  2. 2.
    Ahn, H.-K., Cheong, O.: Aligning two convex figures to minimize area or perimeter. Algorithmica 62(1-2), 464–479 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Alt, H., Hurtado, F.: Packing convex polygons into rectangular boxes. In: JCDCG, pp. 67–80 (2000)Google Scholar
  4. 4.
    Fowler, R.J., Paterson, M., Tanimoto, S.L.: Optimal packing and covering in the plane are np-complete. Inf. Process. Lett. 12(3), 133–137 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Harren, R., Jansen, K., Prädel, L., van Stee, R.: A (5/3 + ε)-approximation for strip packing. Comput. Geom. 47(2), 248–267 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Hershberger, J.: Finding the upper envelope of n line segments in o(n log n) time. Inf. Process. Lett. 33(4), 169–174 (1989)CrossRefzbMATHGoogle Scholar
  7. 7.
    Lee, H.-C., Woo, T.C.: Determining in linear time the minimum area convex hull of two polygons. IIE Transactions 20(4), 338–345 (1988)CrossRefGoogle Scholar
  8. 8.
    Milenkovic, V.: Translational polygon containment and minimal enclosure using linear programming based restriction. In: STOC, pp. 109–118 (1996)Google Scholar
  9. 9.
    Milenkovic, V.: Multiple translational containment. part ii: Exact algorithms. Algorithmica 19(1/2), 183–218 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Milenkovic, V.: Rotational polygon containment and minimum enclosure. In: Symposium on Computational Geometry, pp. 1–8 (1998)Google Scholar
  11. 11.
    Scheithauer, G.: Zuschnitt- und Packungsoptimierung: Problemstellungen, Modellierungstechniken, Lösungsmethoden. Studienbücher Wirtschaftsmathematik. Vieweg+Teubner Verlag (2008)Google Scholar
  12. 12.
    Schiermeyer, I.: Reverse-fit: A 2-optimal algorithm for packing rectangles. In: van Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 290–299. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  13. 13.
    Steinberg, A.: A strip-packing algorithm with absolute performance bound 2. SIAM J. Comput. 26(2), 401–409 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Tang, K., Wang, C.C.L., Chen, D.Z.: Minimum area convex packing of two convex polygons. Int. J. Comput. Geometry Appl. 16(1), 41–74 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    von Niederhäusern, L.: Packing polygons. Master’s thesis, EPFL Lausanne, FU Berlin (2014)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institute of Computer ScienceFreie Universität BerlinBerlinGermany
  2. 2.Department of Computing ScienceTU EindhovenEindhovenThe Netherlands
  3. 3.Institut für Angewandte Informatik, AG Algorithmen und Datenstrukturen (AI VI)Universität BayreuthBayreuthGermany

Personalised recommendations