Advertisement

Fast Quasi-Threshold Editing

  • Ulrik Brandes
  • Michael Hamann
  • Ben Strasser
  • Dorothea Wagner
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9294)

Abstract

We introduce Quasi-Threshold Mover (QTM), an algorithm to solve the quasi-threshold (also called trivially perfect) graph editing problem with a minimum number of edge insertions and deletions. Given a graph it computes a quasi-threshold graph which is close in terms of edit count, but not necessarily closest as this edit problem is NP-hard. We present an extensive experimental study, in which we show that QTM performs well in practice and is the first heuristic that is able to scale to large real-world graphs in practice. As a side result we further present a simple linear-time algorithm for the quasi-threshold recognition problem.

Keywords

Recognition Algorithm Community Detection Potential Parent Community Detection Algorithm Threshold Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bader, D.A., Meyerhenke, H., Sanders, P., Wagner, D.: Graph Partitioning and Graph Clustering: 10th DIMACS Implementation Challenge, vol. 588. American Mathematical Society (2013)Google Scholar
  2. 2.
    Blondel, V., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment 2008(10) (2008)Google Scholar
  3. 3.
    Boldi, P., Codenotti, B., Santini, M., Vigna, S.: Ubicrawler: A scalable fully distributed web crawler. Software - Practice and Experience 34(8), 711–726 (2004)CrossRefGoogle Scholar
  4. 4.
    Boldi, P., Rosa, M., Santini, M., Vigna, S.: Layered label propagation: A multiresolution coordinate-free ordering for compressing social networks. In: Proceedings of the 20th International Conference on World Wide Web (WWW 2011), pp. 587–596. ACM Press (2011)Google Scholar
  5. 5.
    Boldi, P., Vigna, S.: The WebGraph framework I: Compression techniques. In: Proceedings of the 13th International Conference on World Wide Web (WWW 2004), pp. 595–602. ACM Press (2004)Google Scholar
  6. 6.
    Brandes, U., Hamann, M., Strasser, B., Wagner, D.: Fast quasi-threshold editing (2015), http://arxiv.org/abs/1504.07379
  7. 7.
    Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties. Information Processing Letters 58(4), 171–176 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Chiba, N., Nishizeki, T.: Arboricity and subgraph listing algorithms. SIAM Journal on Computing 14(1), 210–223 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Chu, F.P.M.: A simple linear time certifying lbfs-based algorithm for recognizing trivially perfect graphs and their complements. Information Processing Letters 107(1), 7–12 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Drange, P.G., Dregi, M.S., Lokshtanov, D., Sullivan, B.D.: On the threshold of intractability. In: Proceedings of the 23rd Annual European Symposium on Algorithms (ESA 2015). LNCS. Springer (2015)Google Scholar
  11. 11.
    Drange, P.G., Pilipczuk, M.: A polynomial kernel for trivially perfect editing. In: Proceedings of the 23rd Annual European Symposium on Algorithms (ESA 2015). LNCS. Springer (2015)Google Scholar
  12. 12.
    Görke, R., Kappes, A., Wagner, D.: Experiments on density-constrained graph clustering. ACM Journal of Experimental Algorithmics 19, 1.6:1.1–1.6:1.31 (2014)Google Scholar
  13. 13.
    Leskovec, J., Krevl, A.: Snap datasets: Stanford large network dataset collection (June 2014), http://snap.stanford.edu/data
  14. 14.
    Nastos, J., Gao, Y.: Familial groups in social networks. Social Networks 35(3), 439–450 (2013)Google Scholar
  15. 15.
    Ortmann, M., Brandes, U.: Triangle listing algorithms: Back from the diversion. In: Proceedings of the 16th Meeting on Algorithm Engineering and Experiments (ALENEX 2014), pp. 1–8. SIAM (2014)Google Scholar
  16. 16.
    Rotta, R., Noack, A.: Multilevel local search algorithms for modularity clustering. ACM Journal of Experimental Algorithmics 16, 2.3:2.1–2.3:2.27 (2011)Google Scholar
  17. 17.
    Staudt, C., Sazonovs, A., Meyerhenke, H.: Networkit: An interactive tool suite for high-performance network analysis (2014), http://arxiv.org/abs/1403.3005
  18. 18.
    Traud, A.L., Mucha, P.J., Porter, M.A.: Social structure of facebook networks. Physica A: Statistical Mechanics and its Applications 391(16), 4165–4180 (2012)CrossRefGoogle Scholar
  19. 19.
    Wolk, E.S.: A note on “the comparability graph of a tree”. Proceedings of the American Mathematical Society 16(1), 17–20 (1965)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Yan, J.H., Chen, J.J., Chang, G.J.: Quasi-threshold graphs. Discrete Applied Mathematics 69(3), 247–255 (1996)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ulrik Brandes
    • 1
  • Michael Hamann
    • 2
  • Ben Strasser
    • 2
  • Dorothea Wagner
    • 2
  1. 1.Computer and Information ScienceUniversity of KonstanzKonstanzGermany
  2. 2.Faculty of InformaticsKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations