Enumeration of 2-Level Polytopes

  • Adam Bohn
  • Yuri Faenza
  • Samuel Fiorini
  • Vissarion Fisikopoulos
  • Marco Macchia
  • Kanstantsin Pashkovich
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9294)


We propose the first algorithm for enumerating all combinatorial types of 2-level polytopes of a given dimension d, and provide complete experimental results for \(d \leqslant 6\). Our approach is based on the notion of a simplicial core, that allows us to reduce the problem to the enumeration of the closed sets of a discrete closure operator, along with some convex hull computations and isomorphism tests.


Polyhedral computation Optimization Formal concept analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aichholzer, O.: Extremal properties of 0/1-polytopes of dimension 5. In: Ziegler, G., Kalai, G. (eds.) Polytopes - Combinatorics and Computation, pp. 111–130. Birkhäuser (2000)Google Scholar
  2. 2.
    Akutsu, T.: On determining the congruence of point sets in d dimensions. Computational Geometry 9(4), 247–256 (1998)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Beyer, S.: Comprehensive perl archive network: Bit-vector-7.4 (2014). http://search.cpan.org/~stbey/Bit-Vector-7.4
  4. 4.
    Chvátal, V.: On certain polytopes associated with graphs. J. Combinatorial Theory Ser. B 18, 138–154 (1975)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    De Loera, J., Rambau, J., Santos, F.: Triangulations. Algorithms and Computation in Mathematics, vol. 25 (2010)Google Scholar
  6. 6.
    Ganter, B., Reuter, K.: Finding all closed sets: A general approach. Order 8(3), 283–290 (1991) (English)Google Scholar
  7. 7.
    Gawrilow, E., Joswig, M.: Polymake: an approach to modular software design in computational geometry. In: International Symposium on Computational Geometry (SOCG), pp. 222–231. ACM Press (2001)Google Scholar
  8. 8.
    Gouveia, J., Parrilo, P., Thomas, R.: Theta bodies for polynomial ideals. SIAM Journal on Optimization 20(4), 2097–2118 (2010)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Gouveia, J., Robinson, R., Thomas, R.: Polytopes of minimum positive semidefinite rank. Discrete & Computational Geometry 50(3), 679–699 (2013)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Grande, F., Sanyal, R.: Theta rank, levelness, and matroid minors, arXiv preprint, arXiv:1408.1262 (2014)Google Scholar
  11. 11.
    Haase, C.: Lattice polytopes and unimodular triangulations, Ph.D. thesis, Technical University of Berlin (2000)Google Scholar
  12. 12.
    Hanner, O.: Intersections of translates of convex bodies. Mathematica Scandinavica 4, 65–87 (1956)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Hansen, A.: On a certain class of polytopes associated with independence systems. Mathematica Scandinavica 41, 225–241 (1977)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Kalai, G.: The number of faces of centrally-symmetric polytopes. Graphs and Combinatorics 5(1), 389–391 (1989)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Kuznetsov, S., Obiedkov, S.: Comparing performance of algorithms for generating concept lattices. Journal of Experimental and Theoretical Artificial Intelligence 14, 189–216 (2002)CrossRefMATHGoogle Scholar
  16. 16.
    Paffenholz, A.: Faces of Birkhoff polytopes. Electronic Journal of Combinatorics 22 (2015)Google Scholar
  17. 17.
    Sanyal, R., Werner, A., Ziegler, G.: On Kalai’s conjectures concerning centrally symmetric polytopes. Discrete & Computational Geometry 41(2), 183–198 (2009)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Stanley, R.: Decompositions of rational convex polytopes. Annals of Discrete Mathematics, 333–342 (1980)Google Scholar
  19. 19.
    Stanley, R.: Two poset polytopes. Discrete & Computational Geometry 1(1), 9–23 (1986)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Sullivant, S.: Compressed polytopes and statistical disclosure limitation. Tohoku Mathematical Journal, Second Series 58(3), 433–445 (2006)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Ziegler, G.: Lectures on polytopes, vol. 152, Springer Science & Business Media (1995)Google Scholar
  22. 22.
    Ziegler, G.: Lectures on 0/1-polytopes. In: Kalai, G., Ziegler, G. (eds.) Polytopes - Combinatorics and Computation. DMV Seminar, vol. 29, pp. 1–41. Springer, Birkhäuser, Basel (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Adam Bohn
    • 1
  • Yuri Faenza
    • 2
  • Samuel Fiorini
    • 1
  • Vissarion Fisikopoulos
    • 1
  • Marco Macchia
    • 1
  • Kanstantsin Pashkovich
    • 3
  1. 1.Université libre de BruxellesBrusselsBelgium
  2. 2.Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
  3. 3.C & O DepartmentUniversity of WaterlooWaterlooCanada

Personalised recommendations