1-Planar Graphs have Constant Book Thickness

  • Michael A. Bekos
  • Till Bruckdorfer
  • Michael Kaufmann
  • Chrysanthi Raftopoulou
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9294)

Abstract

In a book embedding the vertices of a graph are placed on the “spine” of a book and the edges are assigned to “pages”, so that edges on the same page do not cross. In this paper, we prove that every 1-planar graph (that is, a graph that can be drawn on the plane such that no edge is crossed more than once) admits an embedding in a book with constant number of pages. To the best of our knowledge, the best non-trivial previous upper-bound was \(O(\sqrt{n})\), where n is the number of vertices of the graph.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alam, M. J., Brandenburg, F.J., Kobourov, S.G.: Straight-line grid drawings of 3-connected 1-planar graphs. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 83–94. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  2. 2.
    Bekos, M., Gronemann, M., Raftopoulou, C.: Two-page book embeddings of 4-planar graphs. In: STACS. LIPIcs, vol. 25, pp. 137–148. Schloss Dagstuhl (2014)Google Scholar
  3. 3.
    Bekos, M.A., Bruckdorfer, T., Kaufmann, M., Raftopoulou, C.N.: The book thickness of 1-planar graphs is constant. CoRR, abs/1503.04990 (2015)Google Scholar
  4. 4.
    Bernhart, F., Kainen, P.: The book thickness of a graph. Combinatorial Theory 27(3), 320–331 (1979)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bilski, T.: Embedding graphs in books: a survey. IEEE Proceedings Computers and Digital Techniques 139(2), 134–138 (1992)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bodendiek, R., Schumacher, H., Wagner, K.: Über 1-optimale graphen. Mathematische Nachrichten 117(1), 323–339 (1984)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Cabello, S., Mohar, B.: Adding one edge to planar graphs makes crossing number and 1-planarity hard. SIAM Journal on Computing 42(5), 1803–1829 (2013)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Cornuéjols, G., Naddef, D., Pulleyblank, W.: Halin graphs and the travelling salesman problem. Mathematical Programming 26(3), 287–294 (1983)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Dujmovic, V., Wood, D.: Graph treewidth and geometric thickness parameters. Discrete and Computational Geometry 37(4), 641–670 (2007)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Grigoriev, A., Bodlaender, H.: Algorithms for graphs embeddable with few crossings per edge. Algorithmica 49(1), 1–11 (2007)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Heath, L.: Embedding planar graphs in seven pages. In: FOCS, pp. 74–83. IEEE (1984)Google Scholar
  12. 12.
    Heath, L.: Algorithms for Embedding Graphs in Books. PhD thesis, University of North Carolina (1985)Google Scholar
  13. 13.
    Kainen, P., Overbay, S.: Extension of a theorem of whitney. AML 20(7), 835–837 (2007)MathSciNetMATHGoogle Scholar
  14. 14.
    Korzhik, V., Mohar, B.: Minimal obstructions for 1-immersions and hardness of 1-planarity testing. Journal of Graph Theory 72(1), 30–71 (2013)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Malitz, S.: Genus g graphs have pagenumber \(O(\sqrt{g})\). Journal of Algorithms 17(1), 85–109 (1994)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Malitz, S.: Graphs with E edges have pagenumber \(O(\sqrt{E})\). Journal of Algorithms 17(1), 71–84 (1994)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Nesetril, J., Ossona de Mendez, P.: Sparsity: Graphs, Structures, and Algorithms. Algorithms and Combinatorics, vol. 28. Springer, New York (2012)MATHGoogle Scholar
  18. 18.
    Nishizeki, T., Chiba, N.: Planar Graphs: Theory and Algorithms. In: Hamiltonian Cycles, ch. 10. Dover Books on Mathematics, pp. 171–184. Courier Dover Publications (2008)Google Scholar
  19. 19.
    Ollmann, T.: On the book thicknesses of various graphs. In: Proceedings of the 4th Southeastern Conference on Combinatorics, Graph Theory and Computing. Congressus Numerantium, vol. VIII, p. 459 (1973)Google Scholar
  20. 20.
    Overbay, S.: Graphs with small book thickness. Missouri Journal of Mathematical Science 19(2), 121–130 (2007)MathSciNetMATHGoogle Scholar
  21. 21.
    Wigderson, A.: The complexity of the hamiltonian circuit problem for maximal planar graphs. Technical Report TR-298, EECS Department, Princeton University (1982)Google Scholar
  22. 22.
    Yannakakis, M.: Embedding planar graphs in four pages. Journal of Computer and System Science 38(1), 36–67 (1989)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Michael A. Bekos
    • 1
  • Till Bruckdorfer
    • 1
  • Michael Kaufmann
    • 1
  • Chrysanthi Raftopoulou
    • 2
  1. 1.Wilhelm-Schickard-Institut für InformatikUniversität TübingenTübingenGermany
  2. 2.School of Applied Mathematics and Physical ScienceNTUAAthensGreece

Personalised recommendations