Skip to main content

Bounded Matrix Low Rank Approximation

  • Chapter
  • First Online:
Non-negative Matrix Factorization Techniques

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

Low rank approximation is the problem of finding two matrices \(\mathbf {P} \in \mathbb {R}^{m \times k}\) and \(\mathbf {Q} \in \mathbb {R}^ {k \times n}\) for input matrix \(\mathbf {R} \in \mathbb {R}^{m \times n}\), such that \(\mathbf {R} \approx \mathbf {PQ} \). It is common in recommender systems rating matrix, where the input matrix \(\mathbf {R}\) is bounded in the closed interval \([r_{min},r_{max}]\) such as [1, 5]. In this chapter, we propose a new improved scalable low rank approximation algorithm for such bounded matrices called bounded matrix low rank approximation (BMA) that bounds every element of the approximation \(\mathbf {PQ}\). We also present an alternate formulation to bound existing recommender systems algorithms called BALS and discuss its convergence. Our experiments on real-world datasets illustrate that the proposed method BMA outperforms the state-of-the-art algorithms for recommender system such as stochastic gradient descent, alternating least squares with regularization, SVD++ and bias-SVD on real-world datasets such as Jester, Movielens, Book crossing, Online dating, and Netflix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The details about this dataset can be found in Table 4.2.

References

  1. D.P. Bertsekas, Nonlinear Programming (Athena Scientific, Belmont, 1999)

    MATH  Google Scholar 

  2. L. Brozovsky, V. Petricek, Recommender system for online dating service, in Proceedings of Conference Znalosti 2007, Ostrava, VSB (2007)

    Google Scholar 

  3. A. Cichocki, A.-H. Phan, Fast local algorithms for large scale nonnegative matrix and tensor factorizations. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E92–A, 708–721 (2009)

    Article  Google Scholar 

  4. A. Cichocki, R. Zdunek, S. Amari, Hierarchical ALS algorithms for nonnegative matrix and 3d tensor factorization. Lect. Notes Comput. Sci. 4666, 169–176 (2007)

    Article  Google Scholar 

  5. S. Deerwester, S.T. Dumais, G.W. Furnas, T.K. Landauer, R. Harshman, Indexing by latent semantic analysis. J. Am. Soc. Inf. Sci. 41, 391–407 (1990)

    Article  Google Scholar 

  6. S. Funk, Stochastic gradient descent. (2006) http://sifter.org/ simon/journal/20061211.html [Online; accessed 6-June-2012]

  7. K. Goldberg, Jester collaborative filtering dataset. (2003) http://goldberg.berkeley.edu/jester-data/ [Online; accessed 6-June-2012]

  8. G.H. Golub, C.F. Van Loan, Matrix Computations, 3rd edn. (The Johns Hopkins University Press, Baltimore, 1996)

    MATH  Google Scholar 

  9. L. Grippo, M. Sciandrone, On the convergence of the block nonlinear Gauss-Seidel method under convex constraints. Oper. Res. Lett. 26(3), 127–136 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. N.-D. Ho, P.V. Dooren, V.D. Blondel, Descent methods for nonnegative matrix factorization. (2008) CoRR, abs/0801.3199

  11. R. Kannan, M. Ishteva, H. Park, Bounded matrix low rank approximation, in Proceedings of the 12th IEEE International Conference on Data Mining(ICDM-2012) (2012), pp. 319–328

    Google Scholar 

  12. R. Kannan, M. Ishteva, H. Park, Bounded matrix factorization for recommender system. Knowl. Inf. Syst. 39(3), 491–511 (2014)

    Article  Google Scholar 

  13. H. Kim, H. Park, Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis. Bioinformatics 23(12), 1495–1502 (2007)

    Article  Google Scholar 

  14. H. Kim, H. Park, Nonnegative matrix factorization based on alternating nonnegativity constrained least squares and active set method. SIAM J. Matrix Anal. Appl. 30(2), 713–730 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. J. Kim, Y. He, H. Park, Algorithms for nonnegative matrix and tensor factorizations: a unified view based on block coordinate descent framework. J. Glob. Optim. 1–35 (2013)

    Google Scholar 

  16. J. Kim, H. Park, Fast nonnegative matrix factorization: an active-set-like method and comparisons. SIAM J. Sci. Comput. 33(6), 3261–3281 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. Y. Koren, Factorization meets the neighborhood: a multifaceted collaborative filtering model, in Proceeding of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining—KDD’08 (2008), pp. 426–434

    Google Scholar 

  18. Y. Koren, Collaborative filtering with temporal dynamics, in Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining—KDD’09 (2009), pp. 447

    Google Scholar 

  19. Y. Koren, R. Bell, C. Volinsky, Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009)

    Article  Google Scholar 

  20. D. Kuang, H. Park, C.H.Q. Ding, Symmetric nonnegative matrix factorization for graph clustering, in Proceedings of SIAM International Conference on Data Mining—SDM’12 (2012), pp. 106–117

    Google Scholar 

  21. A. Kyrola, G. Blelloch, C. Guestrin, Graphchi: large-scale graph computation on just a PC, in Proceedings of the 10th USENIX Conference on Operating Systems Design and Implementation, OSDI’12, (USENIX Association, Berkeley, 2012) pp. 31–46

    Google Scholar 

  22. C.J. Lin, Projected gradient methods for nonnegative matrix factorization. Neural Comput. 19(10), 2756–2779 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, J.M. Hellerstein, Graphlab: a new parallel framework for machine learning, in Conference on Uncertainty in Artificial Intelligence (UAI) (2010)

    Google Scholar 

  24. L.W. Mackey, D. Weiss, M.I. Jordan, Mixed membership matrix factorization, in Proceedings of the 27th International Conference on Machine Learning (ICML-10) (2010), pp. 711–718

    Google Scholar 

  25. I. Markovsky, Algorithms and literate programs for weighted low-rank approximation with missing data, in Approximation Algorithms for Complex Systems, ed. by J. Levesley, A. Iske, E. Georgoulis (Springer, Berlin, 2011), pp. 255–273. Chap. 12

    Google Scholar 

  26. Movielens dataset. (1999) http://movielens.umn.edu [Online; accessed 6-June-2012]

  27. A. Paterek, Improving regularized singular value decomposition for collaborative filtering, in Proceedings of 13th ACM International Conference on Knowledge Discovery and Data Mining—KDD’07 (2007), pp. 39–42

    Google Scholar 

  28. R. Salakhutdinov, A. Mnih, Bayesian probabilistic matrix factorization using Markov chain Monte Carlo, in ICML (2008), pp. 880–887

    Google Scholar 

  29. L. Xiong, X. Chen, T.-K. Huang, J.G. Schneider, J.G. Carbonell, Temporal collaborative filtering with Bayesian probabilistic tensor factorization, in Proceedings of the SIAM International Conference on Data Mining-SDM’10 (2010), pp. 211–222

    Google Scholar 

  30. H.-F. Yu, C.-J. Hsieh, S. Si, I.S. Dhillon, Scalable coordinate descent approaches to parallel matrix factorization for recommender systems, in Proceedings of the IEEE International Conference on Data Mining-ICDM’12 (2012), pp. 765–774

    Google Scholar 

  31. Y. Zhou, D. Wilkinson, R. Schreiber, R. Pan, Large-scale parallel collaborative filtering for the Netflix prize. Algorithm. Asp. Inf. Manag. 5034, 337–348 (2008)

    Article  Google Scholar 

  32. C.-N. Ziegler, S.M. McNee, J.A. Konstan, G. Lausen, Improving recommendation lists through topic diversification, in Proceedings of the 14th International Conference on World Wide Web-WWW’05 (2005), pp. 22–32

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the NSF Grant CCF-1348152, the Defense Advanced Research Projects Agency (DARPA) XDATA program grant FA8750-12-2-0309, Research Foundation Flanders (FWO-Vlaanderen), the Flemish Government (Methusalem Fund, METH1), the Belgian Federal Government (Interuniversity Attraction Poles—IAP VII), the ERC grant 320378 (SNLSID), and the ERC grant 258581 (SLRA). Mariya Ishteva is an FWO Pegasus Marie Curie Fellow. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NSF or the DARPA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramakrishnan Kannan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kannan, R., Ishteva, M., Drake, B., Park, H. (2016). Bounded Matrix Low Rank Approximation. In: Naik, G. (eds) Non-negative Matrix Factorization Techniques. Signals and Communication Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48331-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48331-2_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48330-5

  • Online ISBN: 978-3-662-48331-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics