Advertisement

DPA, Bitslicing and Masking at 1 GHz

  • Josep BalaschEmail author
  • Benedikt Gierlichs
  • Oscar Reparaz
  • Ingrid Verbauwhede
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9293)

Abstract

We present DPA attacks on an ARM Cortex-A8 processor running at 1 GHz. This high-end processor is typically found in portable devices such as phones and tablets. In our case, the processor sits in a single board computer and runs a full-fledged Linux operating system. The targeted AES implementation is bitsliced and runs in constant time and constant flow. We show that, despite the complex hardware and software, high clock frequencies and practical measurement issues, the implementation can be broken with DPA starting from a few thousand measurements of the electromagnetic emanation of a decoupling capacitor near the processor. To harden the bitsliced implementation against DPA attacks, we mask it using principles of hardware gate-level masking. We evaluate the security of our masked implementation against first-order and second-order attacks. Our experiments show that successful attacks require roughly two orders of magnitude more measurements.

Keywords

Side-channel analysis DPA ARM Cortex-A8 Bitslicing Gate-level masking 

Notes

Acknowledgements

We would like to thank the CHES 2015 reviewers for their valuable feedback. This work has been supported in part by the Research Council of KU Leuven (GOA/11/007), by the Flemish Government FWO G.0550.12N and by the Hercules foundation (AKUL/11/19). Oscar Reparaz is funded by a PhD fellowship of the Fund for Scientific Research - Flanders (FWO). Benedikt Gierlichs is a Postdoctoral Fellow of the Fund for Scientific Research - Flanders (FWO).

References

  1. 1.
  2. 2.
    Specification for the Advanced Encryption Standard (AES). Federal Information Processing Standards (FIPS) Publication 197 (2001)Google Scholar
  3. 3.
    Aboulkassimi, D., Agoyan, M., Freund, L., Fournier, J., Robisson, B., Tria, A.: ElectroMagnetic analysis (EMA) of software AES on Java mobile phones. In: Information Forensics and Security - WIFS 2011, pp. 1–6. IEEE (2011)Google Scholar
  4. 4.
    Akkar, M.-L., Giraud, C.: An Implementation of DES and AES, Secure against Some Attacks. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 309–318. Springer, Heidelberg (2001) CrossRefGoogle Scholar
  5. 5.
    Balasch, J., Gierlichs, B., Reparaz, O., Verbauwhede, I.: DPA, Bitslicing and Masking at 1 GHz. Cryptology ePrint Archive, Report 2015/727 (2015). http://eprint.iacr.org/
  6. 6.
    Bernstein, D.J.: Cache-timing attacks on AES (2005). http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
  7. 7.
    Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Hevia, A., Neven, G. (eds.) LatinCrypt 2012. LNCS, vol. 7533, pp. 159–176. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  8. 8.
    Biham, E.: A fast new DES implementation in software. In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 260–272. Springer, Heidelberg (1997) CrossRefGoogle Scholar
  9. 9.
    Bonneau, J., Mironov, I.: Cache-collision timing attacks against AES. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 201–215. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  10. 10.
    Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  11. 11.
    Canright, D.: A very compact S-box for AES. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 441–455. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  12. 12.
    Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counteract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  13. 13.
    Coron, J.-S.: Resistance against differential power analysis for elliptic curve cryptosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  14. 14.
    Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption Standard. Information Security and Cryptography. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  15. 15.
    Danis, A.U., Ors, B.: Differential power analysis attack considering decoupling capacitance effect. In: Circuit Theory and Design - ECCTD 2009, pp. 359–362 (2009). doi: 10.1109/ECCTD.2009.5274996
  16. 16.
    Langer EMV. Probe specification. http://www.langer-emv.com
  17. 17.
    Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: concrete results. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 251–261. Springer, Heidelberg (2001) CrossRefGoogle Scholar
  18. 18.
    Gebotys, C.H., Ho, S., Tiu, C.C.: EM analysis of Rijndael and ECC on a wireless Java-based PDA. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 250–264. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  19. 19.
    Goubin, L., Patarin, J.: DES and differential power analysis. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  20. 20.
    Käsper, E., Schwabe, P.: Faster and timing-attack resistant AES-GCM. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 1–17. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  21. 21.
    Kelsey, J., Schneier, B., Wagner, D., Hall, C.: Side channel cryptanalysis of product ciphers. J. Comput. Securi. 8(2/3), 141–158 (2000)Google Scholar
  22. 22.
    Kenworthy, G., Rohatgi, P.: Mobile Device Security: The case for side-channel resistance (2012). http://www.cryptography.com/technology/dpa/dpa-research.html
  23. 23.
    Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996) Google Scholar
  24. 24.
    Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  25. 25.
    Könighofer, R.: A fast and cache-timing resistant implementation of the AES. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 187–202. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  26. 26.
    Mangard, S., Popp, T., Gammel, B.M.: Side-channel leakage of masked CMOS gates. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 351–365. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  27. 27.
    Matsui, M.: How far can we go on the x64 processors? In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 341–358. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  28. 28.
    Matsui, M., Nakajima, J.: On the power of bitslice implementation on Intel Core2 processor. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 121–134. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  29. 29.
    Messerges, T.S.: Using second-order power analysis to attack DPA resistant software. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, p. 238. Springer, Heidelberg (2000) CrossRefGoogle Scholar
  30. 30.
    Messerges, T.S., Dabbish, E.A., Sloan, R.H.: Power analysis attacks of modular exponentiation in smartcards. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 144–157. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  31. 31.
    Nakano, Y., Souissi, Y., Nguyen, R., Sauvage, L., Danger, J.-L., Guilley, S., Kiyomoto, S., Miyake, Y.: A pre-processing composition for secret key recovery on Android smartphone. In: Naccache, D., Sauveron, D. (eds.) WISTP 2014. LNCS, vol. 8501, pp. 76–91. Springer, Heidelberg (2014) Google Scholar
  32. 32.
    O’Flynn, C., Chen, Z.: A case study of side-channel analysis using decoupling capacitor power measurement with the OpenADC. In: Garcia-Alfaro, J., Cuppens, F., Cuppens-Boulahia, N., Miri, A., Tawbi, N. (eds.) FPS 2012. LNCS, vol. 7743, pp. 341–356. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  33. 33.
    Osvik, D.A., Bos, J.W., Stefan, D., Canright, D.: Fast software AES encryption. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 75–93. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  34. 34.
    Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  35. 35.
    Paar, C.: Efficient VLSI architectures for bit-parallel computation in Galois fields. PhD thesis, University of Essen (1994)Google Scholar
  36. 36.
    Page, D.: Theoretical Use of Cache Memory as a Cryptanalytic Side-Channel. Cryptology ePrint Archive, Report 2002/169 (2002). http://eprint.iacr.org/
  37. 37.
    Prouff, E., Rivain, M., Bevan, R.: Statistical analysis of second order differential power analysis. IEEE Trans. Comput. 58(6), 799–811 (2009)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Quisquater, J.-J., Samyde, D.: ElectroMagnetic Analysis (EMA): measures and counter-measures for smart cards. In: Attali, S., Jensen, T. (eds.) E-smart 2001. LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001) CrossRefGoogle Scholar
  39. 39.
    Rijmen, V.: Efficient implementation of the Rijndael S-box (2001)Google Scholar
  40. 40.
    Rudra, A., Dubey, P.K., Jutla, C.S., Kumar, V., Rao, J.R., Rohatgi, P.: Efficient Rijndael encryption implementation with composite field arithmetic. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 171–184. Springer, Heidelberg (2001) CrossRefGoogle Scholar
  41. 41.
    Satoh, A., Morioka, S., Takano, K., Munetoh, S.: A Compact Rijndael hardware architecture with S-box optimization. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 239–254. Springer, Heidelberg (2001) CrossRefGoogle Scholar
  42. 42.
    Messerges, T.S., Dabbish, E.A., Puhl, L.: Method and apparatus for preventing information leakage attacks on a microelectronic assembly. US Patent 6,295,606, 25 September 2001Google Scholar
  43. 43.
    Trichina, E.: Combinational Logic Design for AES SubByte Transformation on Masked Data. Cryptology ePrint Archive, Report 2003/236 (2003). http://eprint.iacr.org/
  44. 44.
    Wolkerstorfer, J., Oswald, E., Lamberger, M.: An ASIC implementation of the AES SBoxes. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 67–78. Springer, Heidelberg (2002) CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2015

Authors and Affiliations

  • Josep Balasch
    • 1
    Email author
  • Benedikt Gierlichs
    • 1
  • Oscar Reparaz
    • 1
  • Ingrid Verbauwhede
    • 1
  1. 1.Department of Electrical Engineering-ESAT/COSIC and iMindsKU LeuvenLeuven-HeverleeBelgium

Personalised recommendations