Advertisement

Improved Side-Channel Analysis of Finite-Field Multiplication

  • Sonia Belaïd
  • Jean-Sébastien Coron
  • Pierre-Alain Fouque
  • Benoît Gérard
  • Jean-Gabriel Kammerer
  • Emmanuel Prouff
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9293)

Abstract

A side-channel analysis of multiplication in \(\mathsf {GF}(2^{128})\) has recently been published by Belaïd, Fouque and Gérard at Asiacrypt 2014, with an application to AES-GCM. Using the least significant bit of the Hamming weight of the multiplication result, the authors have shown how to recover the secret multiplier efficiently. However such least significant bit is very sensitive to noise measurement; this implies that, without averaging, their attack can only work for high signal-to-noise ratios (\( \mathsf {SNR}> 128\)). In this paper we describe a new side-channel attack against the multiplication in \(\mathsf {GF}(2^{128})\) that uses the most significant bits of the Hamming weight. We show that much higher values of noise can be then tolerated. For instance with an \(\mathsf {SNR}\) equal to 8, the key can be recovered using \(2^{20}\) consumption traces with time and memory complexities respectively equal to \(2^{51.68}\) and \(2^{36}\). We moreover show that the new method can be extended to attack the fresh re-keying countermeasure proposed by Medwed, Standaert, Großschädl and Regazzoni at Africacrypt 2010.

Keywords

Side-channel analysis Galois Field Multiplication LPN problem 

References

  1. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives and circular-secure encryption based on hard learning problems. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  2. Arora, S., Ge, R.: New algorithms for learning in presence of errors. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 403–415. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  3. Belaïd, S., Coron, J.-S., Fouque, P.-A., Gérard, B., Kammerer, J.-G., Prouff, E.: Improved side-channel analysis of finite-field multiplication. Cryptology ePrint Archive, Report 2015/542, (2015). http://eprint.iacr.org/
  4. Belaïd, S., Fouque, P.-A., Gérard, B.: Side-Channel analysis of multiplications in GF(2128). In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 306–325. Springer, Heidelberg (2014) Google Scholar
  5. Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem, and the statistical query model. In: 32nd ACM STOC, pp. 435–440. ACM Press, May 2000Google Scholar
  6. Bogos, S., Tramer, F., Vaudenay, S.: On solving LPN using BKW and variants. Cryptology ePrint Archive, Report 2015/049, (2015). http://eprint.iacr.org/2015/049
  7. Carlet, C., Goubin, L., Prouff, E., Quisquater, M., Rivain, M.: Higher-Order masking schemes for S-boxes. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 366–384. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  8. Chekuri, C., Jansen, Rolim, K., J.D.P., Trevisan, L. (eds.) Approximation, randomization and combinatorial optimization, algorithms and techniques. In: 8th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2005 and 9th International Workshop on Randomization and Computation, RANDOM 2005, Berkeley, CA, USA, August 22–24, 2005, Proceedings, vol. 3624 of Lecture Notes in Computer Science. Springer, Heidelberg (2005)Google Scholar
  9. Dabosville, G., Doget, J., Prouff, E.: A new second-order side channel attack based on linear regression. IEEE Trans. Comput. 62(8), 1629–1640 (2013)MathSciNetCrossRefGoogle Scholar
  10. Goodwill, G., Jun, B., Jaffe, J., Rohatgi, P.: A testing methodology for side-channel resistance validation. In: Workshop NIAT (2011)Google Scholar
  11. Guo, Q., Johansson, T., Löndahl, C.: Solving LPN using covering codes. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 1–20. Springer, Heidelberg (2014) Google Scholar
  12. Howgrave-Graham, N., Joux, A.: New generic algorithms for hard knapsacks. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 235–256. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  13. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against probing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  14. Kirchner, P.: Improved generalized birthday attack. Cryptology ePrint Archive, Report 2011/377, (2011). http://eprint.iacr.org/2011/377
  15. Levieil, É., Fouque, P.-A.: An improved LPN algorithm. In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 348–359. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  16. Lyubashevsky, V.: The parity problem in the presence of noise, decoding random linear codes, and the subset sum problem. In: Chekuri et al. (eds.) [CJRT05], pp. 378–389 (2005)Google Scholar
  17. Medwed, M., Standaert, F.-X., Großschädl, J., Regazzoni, F.: Fresh re-keying: security against side-channel and fault attacks for low-cost devices. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 279–296. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  18. Medwed, M., Standaert, F.-X., Joux, A.: Towards super-exponential side-channel security with efficient leakage-resilient PRFs. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 193–212. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  19. O’Flynn, C., Chen, Z.: Chipwhisperer: an open-source platform for hardware embedded security research. Cryptology ePrint Archive, Report 2014/204 (2014). http://eprint.iacr.org/
  20. Pietrzak, K.: Cryptography from learning parity with noise. In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.) SOFSEM 2012. LNCS, vol. 7147, pp. 99–114. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  21. Renauld, M., Kamel, D., Standaert, F.-X., Flandre, D.: Information theoretic and security analysis of a 65-nanometer DDSLL AES S-Box. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 223–239. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  22. Schindler, W., Lemke, K., Paar, C.: A Stochastic Model for Differential Side Channel Cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 30–46. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  23. Schroeppel, R., Shamir, A.: A T \(\text{ s }^{2}\) = o(\(2^{{\rm n}}\)) time/space tradeoff for certain np-complete problems. In: 20th Annual Symposium on Foundations of Computer Science, pp. 328–336. IEEE Computer Society, San Juan, Puerto Rico, 29–31 October (1979)Google Scholar
  24. Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 288–303. Springer, Heidelberg (2002) CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2015

Authors and Affiliations

  • Sonia Belaïd
    • 1
  • Jean-Sébastien Coron
    • 2
  • Pierre-Alain Fouque
    • 3
  • Benoît Gérard
    • 4
  • Jean-Gabriel Kammerer
    • 5
  • Emmanuel Prouff
    • 6
  1. 1.École Normale Supérieure and Thales Communications and SecurityGennevilliersFrance
  2. 2.University of LuxembourgWalferdangeLuxembourg
  3. 3.Université de Rennes 1 and IRISARennesFrance
  4. 4.DGA/MI and IRISARennesFrance
  5. 5.DGA/MI and IRMARRennesFrance
  6. 6.ANSSIParisFrance

Personalised recommendations