Virtual Production of Filaments and Fleeces

  • Raimund Wegener
  • Nicole Marheineke
  • Dietmar Hietel

Abstract

For many years, the Fraunhofer ITWM has been working to virtualize the production of filaments and fleeces in cooperation with a broad spectrum of industrial clients. This application area, embedded in the field of fluid-structure interactions, offers a multitude of mathematical challenges, since the complexity of the processes renders them unamenable to standard simulation techniques. For numerous key aspects, the Fraunhofer ITWM has developed its own models and tools, so that, today, we can generate simulation-based solutions for our clients’ process design and control problems. Here, new modeling approaches, such as turbulent aerodynamic drag models for filament dynamics and stochastic surrogate models for fleece formation, have opened up interesting subject areas for applied mathematics. The contribution in this chapter is based on the Cosserat theory and offers a coherent overview of the models, algorithms, and software building blocks involved. The current state of development is illustrated by means of industrial applications of the spunbond process and the rotational spinning of glass wool.

References

Publications of the Authors

  1. 1.
    Arne, W., Marheineke, N., Meister, A., Wegener, R.: Numerical analysis of Cosserat rod and string models for viscous jets in rotational spinning processes. Math. Models Methods Appl. Sci. 20(10), 1941–1965 (2010) MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Arne, W., Marheineke, N., Meister, A., Schiessl, S., Wegener, R.: Finite volume approach for the instationary Cosserat rod model describing the spinning of viscous jets. J. Comp. Phys. 294, 20–37 (2015) MathSciNetCrossRefGoogle Scholar
  3. 3.
    Arne, W., Marheineke, N., Schnebele, J., Wegener, R.: Fluid-fiber-interactions in rotational spinning process of glass wool manufacturing. J. Math. Ind. 1, 2 (2011) MathSciNetCrossRefGoogle Scholar
  4. 4.
    Arne, W., Marheineke, N., Wegener, R.: Asymptotic transition of Cosserat rod to string models for curved viscous inertial jets. Math. Models Methods Appl. Sci. 21(10), 1987–2018 (2011) MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Bonilla, L.L., Götz, T., Klar, A., Marheineke, N., Wegener, R.: Hydrodynamic limit for the Fokker–Planck equation describing fiber lay-down models. SIAM J. Appl. Math. 68(3), 648–665 (2007) MathSciNetCrossRefGoogle Scholar
  6. 6.
    Götz, T., Klar, A., Marheineke, N., Wegener, R.: A stochastic model and associated Fokker–Planck equation for the fiber lay-down process in nonwoven production processes. SIAM J. Appl. Math. 67(6), 1704–1717 (2007) MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Götz, T., Klar, A., Unterreiter, A., Wegener, R.: Numerical evidence for the non-existence of solutions to the equations describing rotational fiber spinning. Math. Models Methods Appl. Sci. 18(10), 1829–1844 (2008) MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Grothaus, M., Klar, A., Maringer, J., Stilgenbauer, P., Wegener, R.: Application of a three-dimensional fiber lay-down model to non-woven production processes. J. Math. Ind. 4, 4 (2014) MathSciNetCrossRefGoogle Scholar
  9. 9.
    Hietel, D., Wegener, R.: Simulation of spinning and laydown processes. Tech. Text. 3, 145–148 (2005) Google Scholar
  10. 10.
    Hübsch, F., Marheineke, N., Ritter, K., Wegener, R.: Random field sampling for a simplified model of melt-blowing considering turbulent velocity fluctuations. J. Stat. Phys. 150(6), 1115–1137 (2013) MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Klar, A., Marheineke, N., Wegener, R.: Hierarchy of mathematical models for production processes of technical textiles. Z. Angew. Math. Mech. 89, 941–961 (2009) MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Klar, A., Maringer, J., Wegener, R.: A 3d model for fiber lay-down in nonwoven production processes. Math. Models Methods Appl. Sci. 22(9), 1250020 (2012) MathSciNetCrossRefGoogle Scholar
  13. 13.
    Klar, A., Maringer, J., Wegener, R.: A smooth 3d model for fiber lay-down in nonwoven production processes. Kinet. Relat. Models 5(1), 57–112 (2012) MathSciNetCrossRefGoogle Scholar
  14. 14.
    Lorenz, M., Marheineke, N., Wegener, R.: On simulations of spinning processes with a stationary one-dimensional upper convected Maxwell model. J. Math. Ind. 4, 2 (2014) MathSciNetCrossRefGoogle Scholar
  15. 15.
    Marheineke, N., Liljo, J., Mohring, J., Schnebele, J., Wegener, R.: Multiphysics and multimethods problem of rotational glass fiber melt-spinning. Int. J. Numer. Anal. Model. B 3(3), 330–344 (2012) MATHMathSciNetGoogle Scholar
  16. 16.
    Marheineke, N., Wegener, R.: Fiber dynamics in turbulent flows: General modeling framework. SIAM J. Appl. Math. 66(5), 1703–1726 (2006) MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Marheineke, N., Wegener, R.: Fiber dynamics in turbulent flows: Specific Taylor drag. SIAM J. Appl. Math. 68(1), 1–23 (2007) MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Marheineke, N., Wegener, R.: Asymptotic model for the dynamics of curved viscous fibers with surface tension. J. Fluid Mech. 622, 345–369 (2009) MATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Marheineke, N., Wegener, R.: Modeling and application of a stochastic drag for fiber dynamics in turbulent flows. Int. J. Multiph. Flow 37, 136–148 (2011) CrossRefGoogle Scholar
  20. 20.
    Panda, S., Marheineke, N., Wegener, R.: Systematic derivation of an asymptotic model for the dynamics of curved viscous fibers. Math. Methods Appl. Sci. 31, 1153–1173 (2008) MATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Tiwari, S., Antonov, S., Hietel, D., Kuhnert, J., Olawsky, F., Wegener, R.: A meshfree method for simulations of interactions between fluids and flexible structures. In: Griebel, M., Schweitzer, M.A. (eds.) Meshfree Methods for Partial Differential Equations III. Lecture Notes in Computational Science and Engineering, vol. 57, pp. 249–264. Springer, Berlin (2006) CrossRefGoogle Scholar

Dissertations on This Topic at the Fraunhofer ITWM

  1. 22.
    Arne, W.: Viskose Jets in rotatorischen Spinnprozessen. Ph.D. thesis, Universität Kassel (2012) Google Scholar
  2. 23.
    Cibis, T.M.: Homogenisierungsstrategien für Filament–Strömung–Wechselwirkungen. Ph.D. thesis, FAU Erlangen-Nürnberg (2015) Google Scholar
  3. 24.
    Dhadwal, R.: Fibre spinning: Model analysis. Ph.D. thesis, Technische Universität Kaiserslautern (2005) Google Scholar
  4. 25.
    Leithäuser, C.: Controllability of shape-dependent operators and constrained shape optimization for polymer distributors. Ph.D. thesis, Technische Universität Kaiserslautern (2013) Google Scholar
  5. 26.
    Lorenz, M.: On a viscoelastic fibre model—Asymptotics and numerics. Ph.D. thesis, Technische Universität Kaiserslautern (2013) Google Scholar
  6. 27.
    Marheineke, N.: Turbulent fibers—On the motion of long, flexible fibers in turbulent flows. Ph.D. thesis, Technische Universität Kaiserslautern (2005) Google Scholar
  7. 28.
    Maringer, J.: Stochastic and deterministic models for fiber lay-down. Ph.D. thesis, Technische Universität Kaiserslautern (2013) Google Scholar
  8. 29.
    Panda, S.: The dynamics of viscous fibers. Ph.D. thesis, Technische Universität Kaiserslautern (2006) Google Scholar
  9. 30.
    Repke, S.: Adjoint-based optimization approaches for stationary free surface flows. Ph.D. thesis, Technische Universität Kaiserslautern (2011) Google Scholar
  10. 31.
    Schröder, S.: Stochastic methods for fiber-droplet collisions in flow processes. Ph.D. thesis, Technische Universität Kaiserslautern (2013) Google Scholar

Further Literature

  1. 32.
    Antman, S.S.: Nonlinear Problems of Elasticity. Springer, New York (2006) Google Scholar
  2. 33.
    Audoly, B., Clauvelin, N., Brun, P.T., Bergou, M., Grinspun, E., Wardetzky, M.: A discrete geometric approach for simulating the dynamics of thin viscous threads. J. Comp. Phys. 253, 18–49 (2013) MathSciNetCrossRefGoogle Scholar
  3. 34.
    Audoly, B., Pomeau, Y.: Elasticity and Geometry. Oxford University Press, Oxford (2010) MATHGoogle Scholar
  4. 35.
    Barrett, J.W., Knezevic, D.J., Süli, E.: Kinetic Models of Dilute Polymers: Analysis, Approximation and Computation. Nećas Center for Mathematical Modeling, Prague (2009) Google Scholar
  5. 36.
    Batchelor, G.K.: Slender-body theory for particles of arbitrary cross-section in Stokes flow. J. Fluid Mech. 44(3), 419–440 (1970) MATHMathSciNetCrossRefGoogle Scholar
  6. 37.
    Bechtel, S.E., Forest, M.G., Holm, D.D., Lin, K.J.: One-dimensional closure models for three-dimensional incompressible viscoelastic free jets: von Karman flow geometry and elliptical cross-section. J. Fluid Mech. 196, 241–262 (1988) MATHMathSciNetCrossRefGoogle Scholar
  7. 38.
    Bonilla, L.L., Klar, A., Martin, S.: Higher order averaging of linear Fokker–Planck equations with periodic forcing. SIAM J. Appl. Math. 72(4), 1315–1342 (2012) MATHMathSciNetCrossRefGoogle Scholar
  8. 39.
    Bonilla, L.L., Klar, A., Martin, S.: Higher order averaging of Fokker–Planck equations for nonlinear fiber lay-down processes. SIAM J. Appl. Math. 74(2), 366–391 (2014) MATHMathSciNetCrossRefGoogle Scholar
  9. 40.
    Chiu-Webster, S., Lister, J.R.: The fall of a viscous thread onto a moving surface: a ‘fluid-mechanical sewing machine’. J. Fluid Mech. 569, 89–111 (2006) MATHMathSciNetCrossRefGoogle Scholar
  10. 41.
    Cosserat, E., Cosserat, F.: Théorie des corps déformables. Hermann, Paris (1909) Google Scholar
  11. 42.
    Cox, R.G.: The motion of long slender bodies in a viscous fluid. Part 1. General theory. J. Fluid Mech. 44(4), 791–810 (1970) MATHCrossRefGoogle Scholar
  12. 43.
    Decent, S.P., King, A.C., Simmons, M.J.H., Parau, E.I., Wallwork, I.M., Gurney, C.J., Uddin, J.: The trajectory and stability of a spiralling liquid jet: Viscous theory. Appl. Math. Model. 33(12), 4283–4302 (2009) MATHMathSciNetCrossRefGoogle Scholar
  13. 44.
    Desvilettes, L., Villani, C.: On the trend to global equilibrium for spatially inhomogeneous entropy-dissipating systems: The linear Fokker–Planck equation. Commun. Pure Appl. Math. 54, 1–42 (2001) CrossRefGoogle Scholar
  14. 45.
    Dewynne, J.N., Ockendon, J.R., Wilmott, P.: A systematic derivation of the leading-order equations for extensional flows in slender geometries. J. Fluid Mech. 244, 323–338 (1992) MATHMathSciNetCrossRefGoogle Scholar
  15. 46.
    Doulbeault, J., Klar, A., Mouhot, C., Schmeiser, C.: Exponential rate of convergence to equilibrium for a model describing fiber lay-down processes. Appl. Math. Res. Express 2013, 165–175 (2013) Google Scholar
  16. 47.
    Doulbeault, J., Mouhot, C., Schmeiser, C.: Hypocoercivity for linear kinetic equations conserving mass. arXiv:1005.1495 (2010)
  17. 48.
    Eggers, J.: Nonlinear dynamics and breakup of free-surface flow. Rev. Mod. Phys. 69, 865–929 (1997) MATHCrossRefGoogle Scholar
  18. 49.
    Eggers, J., Dupont, T.: Drop formation in a one-dimensional approximation of the Navier–Stokes equation. J. Fluid Mech. 262, 205–221 (2001) MathSciNetCrossRefGoogle Scholar
  19. 50.
    Elliott, F., Majda, A.J.: A new algorithm with plane waves and wavelets for random velocity fields with many spatial scales. J. Comp. Phys. 117, 146–162 (1995) MATHMathSciNetCrossRefGoogle Scholar
  20. 51.
    Entov, V.M., Yarin, A.L.: The dynamics of thin liquid jets in air. J. Fluid Mech. 140, 91–111 (1984) MATHCrossRefGoogle Scholar
  21. 52.
    Ferziger, J.H., Perić, M.: Computational Methods for Fluid Dynamics, 3rd edn. Springer, Berlin (2002) MATHCrossRefGoogle Scholar
  22. 53.
    Forest, M.G., Wang, Q.: Dynamics of slender viscoelastic free jets. SIAM J. Appl. Math. 54(4), 996–1032 (1994) MATHMathSciNetCrossRefGoogle Scholar
  23. 54.
    Forest, M.G., Wang, Q., Bechtel, S.E.: 1d models for thin filaments of liquid crystalline polymers: Coupling of orientation and flow in the stability of simple solutions. Physics D 99(4), 527–554 (2000) CrossRefGoogle Scholar
  24. 55.
    Frisch, U.: Turbulence. The Legacy of A.N. Kolmogorov. Cambridge University Press, Cambridge (1995) MATHGoogle Scholar
  25. 56.
    Geyling, F.T., Homsey, G.M.: Extensional instabilities of the glass fiber drawing process. Glass Technol. 21, 95–102 (1980) Google Scholar
  26. 57.
    Gidaspow, D.: Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions. Academic Press, San Diego (1994) MATHGoogle Scholar
  27. 58.
    Glowinski, R., Pan, T.W., Hesla, T.I., Joseph, D.D., Périaux, J.: A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: Application to particulate flow. J. Comp. Phys. 169, 363–426 (2001) MATHCrossRefGoogle Scholar
  28. 59.
    Gospodinov, P., Roussinov, V.: Nonlinear instability during the isothermal drawing of optical fibers. Int. J. Multiph. Flow 19, 1153–1158 (1993) MATHCrossRefGoogle Scholar
  29. 60.
    Grothaus, M., Klar, A.: Ergodicity and rate of convergence for a non-sectorial fiber lay-down process. SIAM J. Math. Anal. 40(3), 968–983 (2008) MATHMathSciNetCrossRefGoogle Scholar
  30. 61.
    Grothaus, M., Klar, A., Maringer, J., Stilgenbauer, P.: Geometry, mixing properties and hypocoercivity of a degenerate diffusion arising in technical textile industry. arXiv:1203.4502 (2012)
  31. 62.
    Grothaus, M., Stilgenbauer, P.: Geometric Langevin equations on submanifolds and applications to the stochastic melt-spinning process of nonwovens and biology. Stoch. Dyn. 13(4), 1350001 (2013) MathSciNetCrossRefGoogle Scholar
  32. 63.
    Hagen, T.C.: On viscoelastic fluids in elongation. Adv. Math. Res. 1, 187–205 (2002) MathSciNetGoogle Scholar
  33. 64.
    Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I, Nonstiff Problems, 2nd edn. Springer, Berlin (2009) Google Scholar
  34. 65.
    Hartmann, S., Meister, A., Schäfer, M., Turek, S. (eds.): Fluid-Structure Interaction—Theory, Numerics and Application. Kassel University Press, Kassel (2009) Google Scholar
  35. 66.
    Herty, M., Klar, A., Motsch, S., Olawsky, F.: A smooth model for fiber lay-down processes and its diffusion approximations. Kinet. Relat. Models 2(3), 489–502 (2009) MATHMathSciNetCrossRefGoogle Scholar
  36. 67.
    Hlod, A., Aarts, A.C.T., van de Ven, A.A.F., Peletier, M.A.: Three flow regimes of viscous jet falling onto a moving surface. IMA J. Appl. Math. 77(2), 196–219 (2012) MATHMathSciNetCrossRefGoogle Scholar
  37. 68.
    Hoerner, S.F.: Fluid-Dynamic Drag. Practical Information on Aerodynamic Drag and Hydrodynamic Resistance. (1965) Published by the author. Obtainable from ISVA Google Scholar
  38. 69.
    Howell, P.D., Siegel, M.: The evolution of a slender non-axisymmetric drop in an extensional flow. J. Fluid Mech. 521, 155–180 (2004) MATHMathSciNetCrossRefGoogle Scholar
  39. 70.
    Jung, P., Leyendecker, S., Linn, J., Ortiz, M.: A discrete mechanics approach to Cosserat rod theory—Part I: Static equilibria. Int. J. Numer. Methods Eng. 85, 31–60 (2010) MathSciNetCrossRefGoogle Scholar
  40. 71.
    Keller, J.B., Rubinow, S.I.: Slender-body theory for slow viscous flow. J. Fluid Mech. 75(4), 705–714 (1976) MATHCrossRefGoogle Scholar
  41. 72.
    Kirchhoff, G.: Über das Gleichgewicht und die Bewegung eines unendlich dünnen elastischen Stabes. J. Reine Angew. Math. 56, 285–316 (1859) MATHMathSciNetCrossRefGoogle Scholar
  42. 73.
    Kolb, M., Savov, M., Wübker, A.: (Non-)ergodicity of a degenerate diffusion modeling the fiber lay down process. SIAM J. Math. Anal. 45(1), 1–13 (2013) MATHMathSciNetCrossRefGoogle Scholar
  43. 74.
    Kurbanmuradov, O., Sabelfeld, K.: Stochastic spectral and Fourier-wavelet methods for vector Gaussian random fields. Monte Carlo Methods Appl. 12(5–6), 395–445 (2006) MATHMathSciNetCrossRefGoogle Scholar
  44. 75.
    Kutoyants, Y.: Statistical Inference for Ergodic Diffusion Processes. Springer, London (2004) MATHCrossRefGoogle Scholar
  45. 76.
    Lamb, H.: On the uniform motion of a sphere through a viscous fluid. Philos. Mag. 6(21), 113–121 (1911) Google Scholar
  46. 77.
    Launder, B.E., Spalding, B.I.: Mathematical Models of Turbulence. Academic Press, London (1972) MATHGoogle Scholar
  47. 78.
    Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity, 4th edn. Cambridge University Press, Cambridge (1927) MATHGoogle Scholar
  48. 79.
    Lu, Q.Q.: An approach to modeling particle motion in turbulent flows—I. Homogeneous isotropic turbulence. Atmos. Environ. 29(3), 423–436 (1995) CrossRefGoogle Scholar
  49. 80.
    Maddocks, J.H.: Stability of nonlinearly elastic rods. Arch. Ration. Mech. Anal. 85(4), 311–354 (1984) MATHMathSciNetCrossRefGoogle Scholar
  50. 81.
    Maddocks, J.H., Dichmann, D.J.: Conservation laws in the dynamics of rods. J. Elast. 34, 83–96 (1994) MATHMathSciNetCrossRefGoogle Scholar
  51. 82.
    Mahadevan, L., Keller, J.B.: Coiling of flexible ropes. Proc. Roy. Soc. Lond. A 452, 1679–1694 (1996) MATHMathSciNetCrossRefGoogle Scholar
  52. 83.
    Majda, A.J.: Random shearing direction models for isotropic turbulent diffusion. J. Stat. Phys. 75(5–6), 1153–1165 (1994) MATHCrossRefGoogle Scholar
  53. 84.
    Malkan, S.R.: An overview of spunbonding and meltblowing technologies. Tappi J. 78(6), 185–190 (1995) Google Scholar
  54. 85.
    Matovich, M.A., Pearson, J.R.A.: Spinning a molten threadline. Steady-state isothermal viscous flows. Ind. Eng. Chem. Fundam. 8(3), 512–520 (1969) CrossRefGoogle Scholar
  55. 86.
    Monaghan, J.J.: Smoothed particle hydrodynamics. Rep. Prog. Phys. 68, 1703–1759 (2005) MathSciNetCrossRefGoogle Scholar
  56. 87.
    Pearson, J.R.A.: Mechanics of Polymer Processing. Elsevier, New York (1985) Google Scholar
  57. 88.
    Pearson, J.R.A., Matovich, M.A.: Spinning a molten threadline. Stability. Ind. Eng. Chem. Fundam. 8(3), 605–609 (1969) CrossRefGoogle Scholar
  58. 89.
    Peskin, C.S.: The immersed boundary method. Acta Numer. 11, 479–517 (2002) MATHMathSciNetCrossRefGoogle Scholar
  59. 90.
    Pinchuk, L.S., Goldade, V.A., Makarevich, A.V., Kestelman, V.N.: Melt Blowing: Equipment, Technology and Polymer Fibrous Materials. Springer Series in Materials Processing. Springer, Berlin (2002) CrossRefGoogle Scholar
  60. 91.
    Pismen, L.M., Nir, A.: On the motion of suspended particles in stationary homogeneous turbulence. J. Fluid Mech. 84, 193–206 (1978) MATHMathSciNetCrossRefGoogle Scholar
  61. 92.
    Renardy, M.: Mathematical analysis of viscoelastic flows. Annu. Rev. Fluid Mech. 21, 21–36 (1989) MathSciNetCrossRefGoogle Scholar
  62. 93.
    Ribe, N.M.: Coiling of viscous jets. Proc. Roy. Soc. Lond. A 2051, 3223–3239 (2004) MathSciNetCrossRefGoogle Scholar
  63. 94.
    Ribe, N.M., Habibi, M., Bonn, D.: Stability of liquid rope coiling. Phys. Fluids 18, 084102 (2006) MathSciNetCrossRefGoogle Scholar
  64. 95.
    Ribe, N.M., Lister, J.R., Chiu-Webster, S.: Stability of a dragged viscous thread: Onset of ‘stitching’ in a fluid-mechanical ‘sewing machine’. Phys. Fluids 18, 124105 (2006) CrossRefGoogle Scholar
  65. 96.
    Rubin, M.B.: Cosserat Theories. Kluwer, Dordrecht (2000) MATHGoogle Scholar
  66. 97.
    Schewe, G.: On the force fluctuations acting on a circular cylinder in cross-flow from subcritical up to transcritical Reynolds numbers. J. Fluid Mech. 133, 265–285 (1983) CrossRefGoogle Scholar
  67. 98.
    Schlichting, H.: Grenzschicht-Theorie. Verlag G. Braun, Karlsruhe (1982) MATHGoogle Scholar
  68. 99.
    Schultz, W.W., Davis, S.H.: One-dimensional liquid fibres. J. Rheol. 26, 331–345 (1982) MATHCrossRefGoogle Scholar
  69. 100.
    Shah, F.T., Pearson, J.R.A.: On the stability of non-isothermal fibre spinning. Ind. Eng. Chem. Fundam. 11, 145–149 (1972) CrossRefGoogle Scholar
  70. 101.
    Simo, J.C., Vu-Quoc, L.: Three-dimensional finite strain rod model. Part I: Computational aspects. Comput. Methods Appl. Mech. Eng. 58, 79–116 (1986) MATHCrossRefGoogle Scholar
  71. 102.
    Simo, J.C., Vu-Quoc, L.: On the dynamics in space of rods undergoing large motions—a geometrically exact approach. Comput. Methods Appl. Mech. Eng. 66, 125–161 (1988) MATHMathSciNetCrossRefGoogle Scholar
  72. 103.
    Stokes, Y.M., Tuck, E.O.: The role of inertia in extensional fall of viscous drop. J. Fluid Mech. 498, 205–225 (2004) MATHMathSciNetCrossRefGoogle Scholar
  73. 104.
    Sumer, B.M., Fredsoe, J.: Hydrodynamics Around Cylindrical Structures. World Scientific, New Jersey (2006) MATHGoogle Scholar
  74. 105.
    Taylor, G.I.: Analysis of the swimming of long and narrow animals. Proc. Roy. Soc. Lond. A 214, 158–183 (1952) MATHCrossRefGoogle Scholar
  75. 106.
    Tiwari, S., Kuhnert, J.: Finite pointset method based on the projection method for simulations of the incompressible Navier–Stokes equations. In: Griebel, M., Schweitzer, M.A. (eds.) Meshfree Methods for Partial Differential Equations. Lecture Notes in Computational Science and Engineering, vol. 26, pp. 373–387. Springer, Berlin (2003) CrossRefGoogle Scholar
  76. 107.
    Tomotika, S., Aoi, T.: An expansion formula for the drag on a circular cylinder moving through a viscous fluid at small Reynolds number. Q. J. Mech. Appl. Math. 4, 401–406 (1951) MATHMathSciNetCrossRefGoogle Scholar
  77. 108.
    Tomotika, S., Aoi, T., Yosinobu, H.: On the forces acting on a circular cylinder set obliquely in a uniform stream at low values of Reynolds number. Proc. Roy. Soc. Lond. A 219(1137), 233–244 (1953) MATHMathSciNetCrossRefGoogle Scholar
  78. 109.
    VDI-Gesellschaft: VDI-Wärmeatlas, 10th edn. Springer, Berlin (2006) Google Scholar
  79. 110.
    Wallwork, I.M., Decent, S.P., King, A.C., Schulkes, R.M.S.M.: The trajectory and stability of a spiralling liquid jet. Part 1. Inviscid theory. J. Fluid Mech. 459, 43–65 (2002) MATHMathSciNetCrossRefGoogle Scholar
  80. 111.
    Whitman, A.B., DeSilva, C.N.: An exact solution in a nonlinear theory of rods. J. Elast. 4, 265–280 (1974) MATHCrossRefGoogle Scholar
  81. 112.
    Yarin, A.L.: Free Liquid Jets and Films: Hydrodynamics and Rheology. Longman, New York (1993) MATHGoogle Scholar
  82. 113.
    Yarin, A.L., Gospodinov, P., Gottlieb, O., Graham, M.D.: Newtonian glass fiber drawing: Chaotic variation of the cross-sectional radius. Phys. Fluids 11(11), 3201–3208 (1999) MATHCrossRefGoogle Scholar
  83. 114.
    Zdravkovich, M.M.: Flow Around Circular Cylinders. Fundamentals, vol. 1. Oxford University Press, New York (1997) MATHGoogle Scholar
  84. 115.
    Ziabicki, A., Kawai, H.: High Speed Melt Spinning. Wiley, New York (1985) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Raimund Wegener
    • 1
  • Nicole Marheineke
    • 2
  • Dietmar Hietel
    • 1
  1. 1.Fraunhofer-Institut für Techno- und WirtschaftsmathematikKaiserslauternGermany
  2. 2.FAU Erlangen-NürnbergLehrstuhl Angewandte Mathematik 1ErlangenGermany

Personalised recommendations