On a Multi-agent Distributed Asynchronous Intelligence-Sharing and Learning Framework

  • Shashi Shekhar JhaEmail author
  • Shivashankar B. Nair
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9240)


The current digital era is flooded with devices having high processing and networking capabilities. Sharing of information, learning and adaptation in such highly distributed systems can greatly enhance their performance and utility. However, achieving the same in the presence of asynchronous entities is a complex affair. Multi-agent system paradigms possess intrinsic similarities with these distributed systems and thus provide a fitting platform to solve the problems within. Traditional approaches to efficient information sharing and learning among autonomous agents in distributed environments incur high communication overheads. Non-conventional tactics based on social insect colonies provide natural solutions for transfer of social information in highly distributed and dense populations. This paper portrays a framework to achieve distributed and asynchronous sharing of intelligence and consequent learning among the entities of a networked distributed system. This framework couples localized communication with the available multi-agent technologies to realize asynchronous intelligence-sharing and learning. The framework takes in a user-defined objective together with a learning algorithm as inputs and facilitates cooperative learning among the agents using the mechanisms embedded within. The proposed framework has been implemented using Typhon agent framework over a LAN. The results obtained from the experiments performed using both static and dynamic LANs, substantiate the applicability of the proposed framework in real distributed mobile computing environments.


Multi-agent learning Distributed intelligence Mobile agents Typhon Emulation 



The first author would like to acknowledge Tata Consultancy Services (TCS) and Ministry of Human Resource Development, Govt. of India for the support rendered during the research reported in this paper.


  1. 1.
    Alonso, E.: Multi-agent learning. Auton. Agent. Multi-agent Syst. 15(1), 3–4 (2007). CrossRefGoogle Scholar
  2. 2.
    Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw. 54(15), 2787–2805 (2010). CrossRefzbMATHGoogle Scholar
  3. 3.
    Berenji, H., Vengerov, D.: Advantages of cooperation between reinforcement learning agents in difficult stochastic problems. In: The Ninth IEEE International Conference on Fuzzy Systems, 2000, FUZZ IEEE 2000, vol. 2, pp. 871–876 (2000)Google Scholar
  4. 4.
    Bode, M., Jha, S.S., Nair, S.B.: A mobile agent based autonomous partial green corridor discovery and maintenance mechanism for emergency services amidst urban traffic. In: Proceedings of the First International Conference on IoT in Urban Space, URB-IOT 2014, pp. 13–18. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), Brussels (2014).
  5. 5.
    Brenna, M., Falvo, M.C., Foiadelli, F., Martirano, L., Massaro, F., Poli, D., Vaccaro, A.: Challenges in energy systems for the smart-cities of the future. In: 2012 IEEE International on Energy Conference and Exhibition (ENERGYCON), pp. 755–762, September 2012Google Scholar
  6. 6.
    Busoniu, L., Babuska, R., De Schutter, B.: A comprehensive survey of multiagent reinforcement learning. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 38(2), 156–172 (2008)CrossRefGoogle Scholar
  7. 7.
    Cantú-Paz, E.: A survey of parallel genetic algorithms. Calculateurs Paralleles, Reseaux et Systems Repartis 10(2), 141–171 (1998)Google Scholar
  8. 8.
    Cao, J., Das, S.K.: Mobile Agents in Networking and Distributed Computing, vol. 3. Wiley, Hoboken (2012)CrossRefGoogle Scholar
  9. 9.
    Cicirello, V., Smith, S.: Wasp-like agents for distributed factory coordination. Auton. Agent. Multi-agent Syst. 8(3), 237–266 (2004).
  10. 10.
    Dukas, R.: Insect social learning. In: Moore, M.D.B. (ed.) Encyclopedia of Animal Behavior, pp. 176–179. Academic Press, Oxford (2010). CrossRefGoogle Scholar
  11. 11.
    Erdős, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hungar. Acad. Sci 5, 17–61 (1960)Google Scholar
  12. 12.
    Ferber, J.: Multi-agent Systems: An Introduction to Distributed Artificial Intelligence, 1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston (1999)Google Scholar
  13. 13.
    Fisch, D., Jnicke, M., Kalkowski, E., Sick, B.: Learning from others: exchange of classification rules in intelligent distributed systems. Artif. Intell. 187188, 90–114 (2012). CrossRefGoogle Scholar
  14. 14.
    Franks, N.R., Richardson, T.: Teaching in tandem-running ants. Nature 439(7073), 153–153 (2006)CrossRefGoogle Scholar
  15. 15.
    Garland, A., Alterman, R.: Autonomous agents that learn to better coordinate. Auton. Agent. Multi-agent Syst. 8(3), 267–301 (2004).
  16. 16.
    Ghavamzadeh, M., Mahadevan, S., Makar, R.: Hierarchical multi-agent reinforcement learning. Auton. Agent. Multi-agent Syst. 13(2), 197–229 (2006). CrossRefGoogle Scholar
  17. 17.
    Giannetti, L., Maturana, F.P., Discenzo, F.M.: Agent-based control of a municipal water system. In: Pěchouček, M., Petta, P., Varga, L.Z. (eds.) CEEMAS 2005. LNCS (LNAI), vol. 3690, pp. 500–510. Springer, Heidelberg (2005). CrossRefGoogle Scholar
  18. 18.
    Godfrey, W.W., Jha, S.S., Nair, S.B.: On a mobile agent framework for an internet of things. In: 2013 International Conference on Communication Systems and Network Technologies (CSNT), pp. 345–350, April 2013Google Scholar
  19. 19.
    Godfrey, W.W., Jha, S.S., Nair, S.B.: On stigmergically controlling a population of heterogeneous mobile agents using cloning resource. In: Nguyen, N.T. (ed.) TCCI XIV 2014. LNCS, vol. 8615, pp. 49–70. Springer, Heidelberg (2014). Google Scholar
  20. 20.
    Harrison, C.G., Chess, D.M., Kershenbaum, A.: Mobile Agents: Are They a Good Idea?. IBM TJ Watson Research Center Yorktown Heights, New York (1995) Google Scholar
  21. 21.
    Holland, O.E.: Multiagent systems: lessons from social insects and collective robotics. In: The 1996 AAAI Spring Symposium on Adaptation, Coevolution and Learning in Multiagent Systems, pp. 57–62 (1996)Google Scholar
  22. 22.
    Ilarri, S., Mena, E., Illarramendi, A.: Using cooperative mobile agents to monitor distributed and dynamic environments. Inf. Sci. 178(9), 2105–2127 (2008). CrossRefGoogle Scholar
  23. 23.
    Jerne, N.K.: Towards a network theory of the immune system. Annales d’immunologie 125, 373–389 (1974)Google Scholar
  24. 24.
    Jha, S.S., Godfrey, W.W., Nair, S.B.: Stigmergy-based synchronization of a sequence of tasks in a network of asynchronous nodes. Cybern. Syst. 45(5), 373–406 (2014). CrossRefGoogle Scholar
  25. 25.
    Jha, S.S., Nair, S.B.: Orchestrating the sequential execution of tasks by a heterogeneous set of asynchronous mobile agents. In: Müller, J.P., Weyrich, M., Bazzan, A.L.C. (eds.) MATES 2014. LNCS, vol. 8732, pp. 103–120. Springer, Heidelberg (2014) Google Scholar
  26. 26.
    Jha, S.S., Shrivastava, K., Nair, S.B.: On emulating real-world distributed intelligence using mobile agent based localized idiotypic networks. In: Prasath, R., Kathirvalavakumar, T. (eds.) MIKE 2013. LNCS, vol. 8284, pp. 487–498. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  27. 27.
    Kennedy, J.: Particle swarm optimization. In: Gass, S.I., Fu, M.C. (eds.) Encyclopedia of Machine Learning, pp. 760–766. Springer, New York (2010)Google Scholar
  28. 28.
    Konstantinidis, A., Yang, K., Zhang, Q., Zeinalipour-Yazti, D.: A multi-objective evolutionary algorithm for the deployment and power assignment problem in wireless sensor networks. Comput. Netw. 54(6), 960–976 (2010)., new Network ParadigmsCrossRefzbMATHGoogle Scholar
  29. 29.
    Korst, P., Velthuis, H.: The nature of trophallaxis in honeybees. Insectes Soc. 29(2), 209–221 (1982). CrossRefGoogle Scholar
  30. 30.
    Leadbeater, E., Chittka, L.: Social learning in insects from miniature brains to consensus building. Curr. Biol. 17(16), R703–R713 (2007)CrossRefGoogle Scholar
  31. 31.
    Matani, J., Nair, S.B.: Typhon - a mobile agents framework for real world emulation in prolog. In: Sombattheera, C., Agarwal, A., Udgata, S.K., Lavangnananda, K. (eds.) MIWAI 2011. LNCS, vol. 7080, pp. 261–273. Springer, Heidelberg (2011). CrossRefGoogle Scholar
  32. 32.
    Miller, K., Mansingh, G.: Towards a distributed mobile agent decision support system for optimal patient drug prescription. In: 2013 Third International Conference on Innovative Computing Technology (INTECH), pp. 233–238, August 2013Google Scholar
  33. 33.
    Minar, N., Kramer, K., Maes, P.: Cooperating mobile agents for dynamic network routing. In: Hayzelden, A., Bigham, J. (eds.) Software Agents for Future Communication Systems, pp. 287–304. Springer, Berlin Heidelberg (1999). CrossRefGoogle Scholar
  34. 34.
    Oldewurtel, F., Sturzenegger, D., Morari, M.: Importance of occupancy information for building climate control. Appl. Energy 101, 521–532 (2013)., sustainable Development of Energy, Water and Environment SystemsCrossRefGoogle Scholar
  35. 35.
    Outtagarts, A.: Mobile agent-based applications: a survey. Int. J. Comput. Sci. Netw. Secur. 9(11), 331–339 (2009)Google Scholar
  36. 36.
    Panait, L., Luke, S.: Cooperative multi-agent learning: the state of the art. Auton. Agent. Multi-agent Syst. 11(3), 387–434 (2005). CrossRefGoogle Scholar
  37. 37.
    Papaioannou, T., Edwards, J.: Building agile systems with mobile code. Auton. Agent. Multi-agent Syst. 4(4), 293–310 (2001).
  38. 38.
    Queloz, P.A., Villazn, A.: Composition of services with mobile code. Auton. Agent. Multi-agent Syst. 4(4), 311–337 (2001).
  39. 39.
    Rajkumar, R.R., Lee, I., Sha, L., Stankovic, J.: Cyber-physical systems: the next computing revolution. In: Proceedings of the 47th Design Automation Conference, DAC 2010, pp. 731–736. ACM, New York (2010).
  40. 40.
    Ren, W., Beard, R., Atkins, E.: A survey of consensus problems in multi-agent coordination. In: American Control Conference, 2005, Proceedings of the 2005, vol. 3, pp. 1859–1864, June 2005Google Scholar
  41. 41.
    Santos, A., Delbem, A., London, J.B.A., Bretas, N.: Node-depth encoding and multiobjective evolutionary algorithm applied to large-scale distribution system reconfiguration. IEEE Trans. Power Syst. 25(3), 1254–1265 (2010)CrossRefGoogle Scholar
  42. 42.
    Stone, P., Veloso, M.: Multiagent systems: a survey from a machine learning perspective. Auton. Robots 8(3), 345–383 (2000).
  43. 43.
    Van Dyke Parunak, H.: “Go to the ant": engineering principles from natural multi-agent systems. Ann. Oper. Res. 75, 69–101 (1997).
  44. 44.
    Zhao, P., Suryanarayanan, S., Simoes, M.: An energy management system for building structures using a multi-agent decision-making control methodology. IEEE Trans. Ind. Appl. 49(1), 322–330 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringIndian Institute of Technology GuwahatiGuwahatiIndia

Personalised recommendations