Using Signatures in Type Theory to Represent Situations

  • Stergios ChatzikyriakidisEmail author
  • Zhaohui Luo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9067)


Signatures have been introduced to represent situations in formal semantics based on modern type theories. In this paper, we study the notion of signature in more details, presenting it formally and discussing its use in representations of situations. In particular, the new forms of signature entries, the subtyping entries and the manifest entries, are formally presented and studied. Besides being signature entries, these two forms of entries may be introduced to form contextual entries as well and this may have interesting implications in applications of the notion of context to, for example, belief contexts.


Type Theory Formal Semantic Logical Framework Proof Assistant Belief Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Asher, N., Luo, Z.: Formalisation of coercions in lexical semantics. Sinn und Bedeutung 17, Paris (2012)Google Scholar
  2. 2.
    Bassac, C., Mery, B., Retoré, C.: Towards a type-theoretical account of lexical semantics. J. Log. Lang. Inf. 19(2), 229–245 (2010)CrossRefGoogle Scholar
  3. 3.
    Boldini, P.: Formalizing contexts in intuitionistic type theory. Fundamenta Informaticae 4(2), 1–23 (2000)MathSciNetGoogle Scholar
  4. 4.
    Chatzikyriakidis, S.: Adverbs in a modern type theory. In: Asher, N., Soloviev, S. (eds.) LACL 2014. LNCS, vol. 8535, pp. 44–56. Springer, Heidelberg (2014) Google Scholar
  5. 5.
    Chatzikyriakidis, S., Luo, Z.: Adjectives in a modern type-theoretical setting. In: Morrill, G., Nederhof, M.-J. (eds.) FG 2012 and 2013. LNCS, vol. 8036, pp. 159–174. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  6. 6.
    Dapoigny, R., Barlatier, P.: Modelling contexts with dependent types. Fundamenta Informaticae 104, 293–327 (2010)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Dowty, D.R.: Introduction to Montague Semantics. Studies in linguistics and philosophy, vol. 11. Springer, Netherlands (1981)Google Scholar
  8. 8.
    Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. J. Assoc. Comput. Mach. 40(1), 143–184 (1993)CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Kripke, S.A.: A puzzle about belief. In: Margalit, A. (ed.) Meaning and Use. Studies in Linguistics and Philosophy, pp. 239–283. Springer, Netherlands (1979)CrossRefGoogle Scholar
  10. 10.
    Luo, Z.: Computation and Reasoning: A Type Theory for Computer Science. Oxford University Press, New York (1994)zbMATHGoogle Scholar
  11. 11.
    Luo, Z.: Coercive subtyping. J. Log. Comput. 9(1), 105–130 (1999)CrossRefzbMATHGoogle Scholar
  12. 12.
    Luo, Z.: Manifest fields and module mechanisms in intensional type theory. In: Berardi, S., Damiani, F., de’Liguoro, U. (eds.) TYPES 2008. LNCS, vol. 5497, pp. 237–255. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  13. 13.
    Luo, Z.: Type-theoretical semantics with coercive subtyping. Semantics and Linguistic Theory 20 (SALT20), Vancouver (2010)Google Scholar
  14. 14.
    Luo, Z.: Formal semantics in modern type theories with coercive subtyping. Linguist. Philos. 35(6), 491–513 (2012)CrossRefGoogle Scholar
  15. 15.
    Luo, Z.: Formal Semantics in modern type theories: is it model-theoretic, proof-theoretic, or both? In: Asher, N., Soloviev, S. (eds.) LACL 2014. LNCS, vol. 8535, pp. 177–188. Springer, Heidelberg (2014) Google Scholar
  16. 16.
    Luo, Z., Part, F.: Subtyping in type theory: coercion contexts and local coercions (extended abstract). In: TYPES 2013, Toulouse (2013)Google Scholar
  17. 17.
    Luo, Z., Soloviev, S., Xue, T.: Coercive subtyping: theory and implementation. Inf. Comput. 223, 18–42 (2012)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Montague, R.: The proper treatment of quantification in ordinary English. In: Hintikka, J., Moravcsik, J., Suppes, P. (eds.) Approaches to Natural Languages. Synthese Library, vol. 49, pp. 221–242. Springer, Netherlands (1973)CrossRefGoogle Scholar
  19. 19.
    Nordström, B., Petersson, K., Smith, J.: Programming in Martin-Löf’s Type Theory: An Introduction. Oxford University Press, New York (1990)zbMATHGoogle Scholar
  20. 20.
    Nunberg, G.: Transfers of meaning. J. Seman. 12(2), 109–132 (1995)CrossRefGoogle Scholar
  21. 21.
    Pollard, C.: Hyperintensional questions. In: Hodges, W., de Queiroz, R. (eds.) WoLLIC 2008. LNCS (LNAI), vol. 5110, pp. 272–285. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  22. 22.
    Pollard, C.: Hyperintensions. J. Log. Comput. 18(2), 257–282 (2008)CrossRefMathSciNetzbMATHGoogle Scholar
  23. 23.
    Ranta, A.: Type-Theoretical Grammar. Oxford University Press, Oxford (1994)zbMATHGoogle Scholar
  24. 24.
    Saeed, J.: Semantics. Wiley-Blackwell, Malden (1997) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Computer ScienceRoyal Holloway, University of LondonEghamUK

Personalised recommendations