Computing the Semantics of Plurals and Massive Entities Using Many-Sorted Types

  • Bruno MeryEmail author
  • Richard Moot
  • Christian Retoré
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9067)


We demonstrate how the specifics of the semantics for collective, distributive and covering readings for plurals and mass nouns can be integrated in a recent type-theoretical framework with rich lexical semantics. We also explore the significance of an higher-order type system for gradable predicates and other complex predications, as well as the relevance of a multi-sorted approach to such phenomena. All the while, we will detail the process of analysis from syntax to semantics and ensure that compositionality and computability are kept.


Lexical Semantics Plural Nouns Mass Nouns Higher-Order Logic Syntax and Semantics Analysis New Type Theories 


  1. 1.
    Asher, N.: Lexical Meaning in Context: a Web of Words. Cambridge University Press, Cambridge (2011)CrossRefGoogle Scholar
  2. 2.
    Bassac, C., Mery, B., Retoré, C.: Towards a type-theoretical account of lexical semantics. J. Lang. Logic Inf. 19(2), 229–245 (2010)CrossRefGoogle Scholar
  3. 3.
    Bekki, D., Asher, N.: Logical polysemy and subtyping. In: Motomura, Y., Butler, A., Bekki, D. (eds.) JSAI-isAI 2012. LNCS, vol. 7856, pp. 17–24. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  4. 4.
    Clément, L., Gerdes, K.: Analyzing zeugmas in XLFG. In: LFG 2006, Konstanz, Germany (2006)Google Scholar
  5. 5.
    Gillon, B.S.: Towards a common semantics for english count and mass nouns. Linguist. Philos. 15(6), 597–639 (1992)CrossRefGoogle Scholar
  6. 6.
    Girard, J.Y.: Interprétation fonctionnelle et élimination des coupures de l’arithmétique d’ordre supérieur. Université Paris VII, Thèse de Doctorat d’État (1972)Google Scholar
  7. 7.
    Hendriks, P.: Ellipsis and multimodal categorial type logic. In: Morrill, G., Oehrle, R.T., (eds.) Proceedings of Formal Grammar 1995, pp. 107–122, Barcelona, Spain (1995)Google Scholar
  8. 8.
    Kennedy, C.: Vagueness and grammar: the semantics of relative and absolute gradable adjectives. Linguist. Philos. 30(1), 1–45 (2007)CrossRefGoogle Scholar
  9. 9.
    Lambek, J.: The mathematics of sentence structure. Am. Math. Mon. 65, 154–170 (1958)CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    Lefeuvre, A., Moot, R., Retoré, C.: Traitement automatique d’un corpus de récits de voyages pyrénéens : analyse syntaxique, sémantique et pragmatique dans le cadre de la théorie des types. In: Congrès mondial de linguistique française (2012)Google Scholar
  11. 11.
    Li, X.P..: On the semantics of classifiers in Chinese. Ph.D. thesis, Bar-Ilan University (2011)Google Scholar
  12. 12.
    Link, G.: The logical analysis of plurals and mass terms: a lattice-theoretic approach. In: Portner, P., Partee, B.H. (eds.) Formal Semantics - the Essential Readings, pp. 127–147. Blackwell, Oxford (1983)Google Scholar
  13. 13.
    Luo, Z., Soloviev, S., Xue, T.: Coercive subtyping: theory and implementation. Inf. Comput. 223, 18–42 (2013)CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Mery, B.: Modélisation de la Sémantique Lexicale dans le cadre de la Théorie des Types. Ph.D. thesis, Université de Bordeaux, July 2011Google Scholar
  15. 15.
    Mery, B., Moot, R., Retoré, C.: Plurals: individuals and sets in a richly typed semantics. In: Yatabe, S. (ed.) LENSL 2010 - 10th Workshop on Logic and Engineering of Natural Semantics of Language, Japanese Symposium for Artifitial Intelligence, International Society for AI - 2013, pp. 143–156, Hiyoshi, Kanagawa, Japan, jSAI-ISAI, Keio University, October 2013Google Scholar
  16. 16.
    Mery, B., Retoré, C.: Semantic types, lexical sorts and classifiers. In: NLPCS 2010- 10th International Workshop on Natural Language Processing and Computer Science - 2013, Marseille, France, October 2013Google Scholar
  17. 17.
    Montague, R.: The proper treatment of quantification in ordinary English. Selected Papers of Richard Montague. In: Thomason, R. (ed.) Formal Philosophy. Yale University Press, New Haven (1974)Google Scholar
  18. 18.
    Moortgat, M.: Categorial type logics. In: van Benthem, J., ter Meulen, A. (eds.) Handbook of Logic and Language, Chap.2, pp. 95–179. North-Holland Elsevier, Amsterdam (2011)Google Scholar
  19. 19.
    Moot, R.: Wide-coverage French syntax and semantics using Grail. In: Proceedings of Traitement Automatique des Langues Naturelles (TALN), Montreal (2010)Google Scholar
  20. 20.
    Moot, R., Retoré, C.: A logic for categorial grammars: Lambek’s syntactic calculus. In: Moot, R., Retoré, C. (eds.) The Logic of Categorial Grammars. LNCS, vol. 6850, pp. 23–63. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  21. 21.
    Morrill, G.: Categorial Grammar: Logical Syntax, Semantics, and Processing. Oxford University Press, Oxford (2011)Google Scholar
  22. 22.
    Morrill, G., Valentín, O., Fadda, M.: The displacement calculus. J. Logic Lang. Inform. 20(1), 1–48 (2011)CrossRefzbMATHGoogle Scholar
  23. 23.
    Morzycki, M.: Metalinguistic comparison in an alternative semantics for imprecision. Nat. Lang. Seman. 19(1), 39–86 (2011)CrossRefGoogle Scholar
  24. 24.
    Muskens, R.: Combining montague semantics and discourse representation. Linguist. Philos. 19, 143–186 (1996)CrossRefGoogle Scholar
  25. 25.
    Nicolas, D.: Mass nouns and plural logic. Linguist. Philos. 31(2), 211–244 (2008)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Pustejovsky, J.: The Generative Lexicon. MIT Press, Cambridge (1995)Google Scholar
  27. 27.
    Prévot, L., Moot, R., Retoré, C.: Un calcul de termes typés pour la pragmatique lexicale - chemins et voyageurs fictifs dans un corpus de récits de voyages. In: Traitement Automatique du Langage Naturel - TALN 2011, pp. 161–166, Montpellier, France (2011)Google Scholar
  28. 28.
    Ranta, A.: Type-theoretical Grammar. Clarendon Press, Oxford (1994)zbMATHGoogle Scholar
  29. 29.
    Real-Coelho, L.-M., Retoré, C.: A generative montagovian lexicon for polysemous deverbal nouns. In: 4th World Congress and School on Universal Logic - Workshop on Logic and Linguistics, Rio de Janeiro (2013)Google Scholar
  30. 30.
    Retoré, C.: The Montagovian Generative Lexicon Lambda \(Ty_n\): a Type Theoretical Framework for Natural Language Semantics. In: Matthes, R., Schubert, A. (eds.) 19th International Conference on Types for Proofs and Programs (TYPES 2013), volume 26 of Leibniz International Proceedings in In-formatics (LIPIcs), pp. 202–229, Dagstuhl, Germany. Schloss Dagstuhl Leibniz-Zentrum fuer Informatik (2014)Google Scholar
  31. 31.
    Solt, S.: Notes on the comparison class. In: Nouwen, R., van Rooij, R., Sauerland, U., Schmitz, H.-C. (eds.) Vagueness in Communication. LNCS, vol. 6517, pp. 189–206. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  32. 32.
    T’sou, B.K.: Language contact and linguistic innovation. In: Lackner, M., Amelung, I., Kurtz, J. (eds.) New Terms for New Ideas. Western Knowledge and Lexical Change in Late Imperial China, pp. 35–56. Koninklijke Brill, The Netherlands (2001)Google Scholar
  33. 33.
    van Eijck, J., Unger, C.: Computational Semantics with Functional Programming. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  34. 34.
    Zwitserlood, I.: Classifiers. In: Pfau, R., Steinbach, M., Woll, B. (eds.) Sign Languages: an International Handbook, pp. 158–186. Mouton de Gruyter, Berlin (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Bruno Mery
    • 1
    • 2
    Email author
  • Richard Moot
    • 1
    • 2
  • Christian Retoré
    • 1
    • 2
  1. 1.LaBRI-CNRSUniversité de BordeauxTalenceFrance
  2. 2.LIRMM-CNRSUniversité Montpellier 2MontpellierFrance

Personalised recommendations