Advertisement

How Many Threads will be too Many? On the Scalability of OpenMP Implementations

  • Christian IwainskyEmail author
  • Sergei Shudler
  • Alexandru Calotoiu
  • Alexandre Strube
  • Michael Knobloch
  • Christian Bischof
  • Felix Wolf
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9233)

Abstract

Exascale systems will exhibit much higher degrees of parallelism both in terms of the number of nodes and the number of cores per node. OpenMP is a widely used standard for exploiting parallelism on the level of individual nodes. Although successfully used on today’s systems, it is unclear how well OpenMP implementations will scale to much higher numbers of threads. In this work, we apply automated performance modeling to examine the scalability of OpenMP constructs across different compilers and platforms. We ran tests on Intel Xeon multi-board, Intel Xeon Phi, and Blue Gene with compilers from GNU, IBM, Intel, and PGI. The resulting models reveal a number of scalability issues in implementations of OpenMP constructs and show unexpected differences between compilers.

Keywords

Performance modeling OpenMP Scalability 

Notes

Acknowledgment

This work was performed under the auspices of the DFG Priority Programme 1648 “Software for Exascale Computing” (SPPEXA). The authors thank Christian Terboven for the fruitful discussions on scalability expectations for OpenMP and for providing access to the BCS machine at RWTH Aachen University.

References

  1. 1.
    Stevens, R., et al.: Architectures and Technology for Extreme Scale Computing. Technical report, ASCR Scientific Grand Challenges Workshop Series, December 2009Google Scholar
  2. 2.
    Calotoiu, A., Hoefler, T., Poke, M., Wolf, F.: Using automated performance modeling to find scalability bugs in complex codes. In: Proceedings of the ACM/IEEE Conference on Supercomputing (SC 2013), p. 45 (2013)Google Scholar
  3. 3.
    Bull, J.M.: Measuring synchronisation and scheduling overheads in OpenMP. In: Proceedings of First European Workshop on OpenMP, pp. 99–105 (1999)Google Scholar
  4. 4.
    Bull, J.M., O’Neill, D.: A microbenchmark suite for OpenMP 2.0. ACM SIGARCH Comput. Archit. News 29(5), 41–48 (2001)CrossRefGoogle Scholar
  5. 5.
    Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual performance model for multicore architectures. Commun. ACM 52(4), 65–76 (2009)CrossRefGoogle Scholar
  6. 6.
    Picard, R.R., Cook, R.D.: Cross-validation of regression models. J. Am. Stat. Assoc. 79(387), 575–583 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Hoefler, T., Schneider, T., Lumsdaine, A.: Accurately measuring collective operations at massive scale. In: Proceedings of the IEEE International Parallel & Distributed Processing Symposium, IPDPS 2008, pp. 1–8 (2008)Google Scholar
  8. 8.
    Mills, D.L.: Internet time synchronization: the Network Time Protocol. IEEE Trans. Commun. 39(10), 1482–1493 (1991)CrossRefGoogle Scholar
  9. 9.
    Weyers, B., Terboven, C., Schmidl, D., Herber, J., Kuhlen, T.W., Müller, M.S., Hentschel, B.: Visualization of memory access behavior on hierarchical NUMA architectures. In: Proceedings of the First Workshop on Visual Performance Analysis, VPA 2014, Piscataway, NJ, USA, pp. 42–49. IEEE Press (2014)Google Scholar
  10. 10.
    Mathis, M.M., Amato, N.M., Adams, M.L.: A general performance model for parallel sweeps on orthogonal grids for particle transport calculations. Technical report, College Station, TX, USA (2000)Google Scholar
  11. 11.
    Pllana, S., Brandic, I., Benkner, S.: Performance modeling and prediction of parallel and distributed computing systems: a survey of the state of the art. In: Proceedings of the 1st International Conference on Complex, Intelligent and Software Intensive Systems (CISIS), pp. 279–284 (2007)Google Scholar
  12. 12.
    Petrini, F., Kerbyson, D.J., Pakin, S.: The case of the missing supercomputer performance: achieving optimal performance on the 8,192 processors of ASCI Q. In: Proceedings of the ACM/IEEE Conference on Supercomputing (SC 2003), p. 55 (2003)Google Scholar
  13. 13.
    Tallent, N.R., Hoisie, A.: Palm: easing the burden of analytical performance modeling. In: Proceedings of the International Conference on Supercomputing (ICS), pp. 221–230 (2014)Google Scholar
  14. 14.
    Spafford, K.L., Vetter, J.S.: Aspen: a domain specific language for performance modeling. In: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis. SC 2012, Los Alamitos, CA, USA, pp. 84:1–84:11. IEEE Computer Society Press (2012)Google Scholar
  15. 15.
    Lee, B.C., Brooks, D.M., de Supinski, B.R., Schulz, M., Singh, K., McKee, S.A.: Methods of inference and learning for performance modeling of parallel applications. In: Proceedings of the 12th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP 2007), pp. 249–258 (2007)Google Scholar
  16. 16.
    Zhai, J., Chen, W., Zheng, W.: PHANTOM: predicting performance of parallel applications on large-scale parallel machines using a single node. SIGPLAN Not. 45(5), 305–314 (2010)CrossRefGoogle Scholar
  17. 17.
    Wu, X., Mueller, F.: ScalaExtrap: trace-based communication extrapolation for SPMD programs. In: Proceedings of the 16th ACM Symposium on Principles and Practice of Parallel Programming (PPoPP 2011), pp. 113–122 (2011)Google Scholar
  18. 18.
    Carrington, L., Laurenzano, M., Tiwari, A.: Characterizing large-scale HPC applications through trace extrapolation. Parallel Process. Lett. 23(4), 1340008 (2013). doi: 10.1142/S0129626413400082 MathSciNetCrossRefGoogle Scholar
  19. 19.
    Fredrickson, N.R., Afsahi, A., Qian, Y.: Performance characteristics of OpenMP constructs, and application benchmarks on a large symmetric multiprocessor. In: Proceedings of the 17th Annual International Conference on Supercomputing, pp. 140–149. ACM (2003)Google Scholar
  20. 20.
    Fürlinger, K., Gerndt, M.: Analyzing overheads and scalability characteristics of OpenMP applications. In: Daydé, M., Palma, J.M.L.M., Coutinho, A.L.G.A., Pacitti, E., Lopes, J.C. (eds.) VECPAR 2006. LNCS, vol. 4395, pp. 39–51. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  21. 21.
    Liao, C., Liu, Z., Huang, L., Chapman, B.: Evaluating OpenMP on chip multithreading platforms. In: Mueller, M.S., Chapman, B.M., de Supinski, B.R., Malony, A.D., Voss, M. (eds.) IWOMP 2005/2006. LNCS, vol. 4315, pp. 178–190. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  22. 22.
    Bronevetsky, G., Gyllenhaal, J., de Supinski, B.R.: CLOMP: accurately characterizing OpenMP application overheads. In: Eigenmann, R., de Supinski, B.R. (eds.) IWOMP 2008. LNCS, vol. 5004, pp. 13–25. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  23. 23.
    Cramer, T., Schmidl, D., Klemm, M., an Mey, D.: OpenMP programming on Intel Xeon Phi coprocessors: an early performance comparison. In: Proceedings of the Many-core Applications Research Community (MARC) Symposium at RWTH Aachen University, pp. 38–44, November 2012Google Scholar
  24. 24.
    Eichenberger, A.E., O’Brien, K.: Experimenting with low-overhead OpenMP runtime on IBM Blue Gene/Q. IBM J. Res. Dev. 57(1/2), 8–1 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Christian Iwainsky
    • 1
    Email author
  • Sergei Shudler
    • 2
  • Alexandru Calotoiu
    • 2
  • Alexandre Strube
    • 3
  • Michael Knobloch
    • 3
  • Christian Bischof
    • 1
  • Felix Wolf
    • 1
  1. 1.Technische Universität DarmstadtDarmstadtGermany
  2. 2.German Research School for Simulation SciencesAachenGermany
  3. 3.Forschungszentrum JülichJülichGermany

Personalised recommendations