Advertisement

Baryogenesis

  • Cosimo BambiEmail author
  • Alexandre D. Dolgov
Chapter
Part of the UNITEXT for Physics book series (UNITEXTPH)

Abstract

Observations show that, at least in our astronomical neighborhood, the Universe is matter-dominated. The amount of antimatter is very small and it can be explained by its secondary production in high energy cosmic ray collisions or in catastrophic astrophysical phenomena. While there are many potentially possible scenarios proposed in the literature for the creation of the observed matter-antimatter asymmetry, we do not yet know the exact mechanism responsible for it. An initially tiny asymmetry seems to be excluded by the inflationary paradigm and therefore it is necessary a baryogenesis period, namely the creation of an asymmetry between baryons and antibaryons. Today we know that the Standard Model of particle physics cannot do it, and therefore the observed matter-antimatter asymmetry can be seen as an evidence of new physics. Baryogenesis models usually involve very high energy physics, which makes these scenarios extremely difficult to test with the available accelerator energies.

Keywords

Black Hole Baryon Asymmetry Primordial Black Hole Black Hole Evaporation Baryonic Charge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. F.C. Adams, G.L. Kane, M. Mbonye, M.J. Perry, Int. J. Mod. Phys. A 16, 2399 (2001) [hep-ph/0009154]Google Scholar
  2. P.A.R. Ade et al., Planck collaboration. Astron. Astrophys. 571, A16 (2014) arXiv:1303.5076 [astro-ph.CO]
  3. S.L. Adler, Phys. Rev. 177, 2426 (1969)CrossRefADSGoogle Scholar
  4. I. Affleck, M. Dine, Nucl. Phys. B 249, 361 (1985)MathSciNetCrossRefADSGoogle Scholar
  5. J. Alcaraz et al., AMS collaboration. Phys. Lett. B 461, 387 (1999) [hep-ex/0002048]Google Scholar
  6. J. Ambjorn, T. Askgaard, H. Porter, M.E. Shaposhnikov, Nucl. Phys. B 353, 346 (1991)CrossRefADSGoogle Scholar
  7. N. Arkani-Hamed, S. Dimopoulos, G.R. Dvali, Phys. Lett. B 429, 263 (1998) [hep-ph/9803315]Google Scholar
  8. P.B. Arnold, L.D. McLerran, Phys. Rev. D 36, 581 (1987)CrossRefADSGoogle Scholar
  9. K.R.S. Balaji, T. Biswas, R.H. Brandenberger, D. London, Phys. Lett. B 595, 22 (2004) [hep-ph/0403014]Google Scholar
  10. K.R.S. Balaji, T. Biswas, R.H. Brandenberger, D. London, Phys. Rev. D 72, 056005 (2005) [hep-ph/0506013]Google Scholar
  11. P. von Ballmoos, Hyperfine Interact. 228, 91 (2014). arXiv:1401.7258 [astro-ph.HE]
  12. C. Bambi, A.D. Dolgov, Nucl. Phys. B 784, 132 (2007) [astro-ph/0702350]Google Scholar
  13. C. Bambi, A.D. Dolgov, K. Freese, Nucl. Phys. B 763, 91 (2007) [hep-ph/0606321]Google Scholar
  14. J.S. Bell, R. Jackiw, Nuovo Cim. A 60, 47 (1969)CrossRefADSGoogle Scholar
  15. S.I. Blinnikov, A.D. Dolgov, K.A. Postnov. arXiv:1409.5736 [astro-ph.HE]
  16. M. Boezio et al., PAMELA collaboration. J. Phys. Conf. Ser. 110, 062002 (2008)CrossRefADSGoogle Scholar
  17. H.E. Bond, E.P. Nelan, D.A. VandenBerg, G.H. Schaefer, D. Harmer, Astrophys. J. 765, L12 (2013). arXiv:1302.3180 [astro-ph.SR]
  18. R.C.E. van den Bosch, K. Gebhardt, K. Gultekin, G. van de Ven, A. van der Wel, J.L. Walsh, Nature 491, 729 (2012). arXiv:1211.6429 [astro-ph.CO]
  19. W. Buchmuller, P. Di Bari, M. Plumacher, New J. Phys. 6, 105 (2004) [hep-ph/0406014]Google Scholar
  20. W. Buchmuller, P. Di Bari, M. Plumacher, Annals Phys. 315, 305 (2005a) [hep-ph/0401240]Google Scholar
  21. W. Buchmuller, R.D. Peccei, T. Yanagida, Ann. Rev. Nucl. Part. Sci. 55, 311 (2005b) [hep-ph/0502169]Google Scholar
  22. T.S. Bunch, P.C.W. Davies, Proc. Roy. Soc. Lond. A 360, 117 (1978)MathSciNetCrossRefADSGoogle Scholar
  23. B.J. Carr, S.W. Hawking, Mon. Not. Roy. Astron. Soc. 168, 399 (1974)CrossRefADSGoogle Scholar
  24. M.C. Chen, (2007) hep-ph/0703087
  25. J.H. Christenson, J.W. Cronin, V.L. Fitch, R. Turlay, Phys. Rev. Lett. 13, 138 (1964)CrossRefADSGoogle Scholar
  26. S.R. Coleman, E.J. Weinberg, Phys. Rev. D 7, 1888 (1973)CrossRefADSGoogle Scholar
  27. D. Coe et al., Astrophys. J. 762, 32 (2013). arXiv:1211.3663 [astro-ph.CO]
  28. A.G. Cohen, D.B. Kaplan, Phys. Lett. B 199, 251 (1987)CrossRefADSGoogle Scholar
  29. A.G. Cohen, D.B. Kaplan, Nucl. Phys. B 308, 913 (1988)Google Scholar
  30. A.G. Cohen, D.B. Kaplan, A.E. Nelson, Ann. Rev. Nucl. Part. Sci. 43, 27 (1993) [hep-ph/9302210]Google Scholar
  31. A.G. Cohen, A. De Rujula, S.L. Glashow, Astrophys. J. 495, 539 (1998) [astro-ph/9707087]Google Scholar
  32. R. Cooke, M. Pettini, R.A. Jorgenson, M.T. Murphy, C.C. Steidel, Astrophys. J. 781, 31 (2014). arXiv:1308.3240 [astro-ph.CO]
  33. J.J. Cowan et al., Astrophys. J. 572, 861 (2002) [astro-ph/0202429]Google Scholar
  34. A. Cucchiara et al., Astrophys. J. 736, 7 (2011). arXiv:1105.4915 [astro-ph.CO]
  35. M. Dine, A. Kusenko, Rev. Mod. Phys. 76, 1 (2003) [hep-ph/0303065]Google Scholar
  36. P.A.M. Dirac, Proc. Roy. Soc. Lond. A 117, 610 (1928)zbMATHCrossRefADSGoogle Scholar
  37. A.D. Dolgov, Sov. Phys. JETP 52, 169 (1980) [Zh. Eksp. Teor. Fiz. 79, 337 (1980)]Google Scholar
  38. A.D. Dolgov, Phys. Rev. D 24, 1042 (1981)CrossRefADSGoogle Scholar
  39. A.D. Dolgov, Phys. Rept. 222, 309 (1992)CrossRefADSGoogle Scholar
  40. A. Dolgov, J. Silk, Phys. Rev. D 47, 4244 (1993)Google Scholar
  41. A.D. Dolgov, (1997) hep-ph/9707419
  42. A.D. Dolgov, (2005). hep-ph/0511213
  43. A.D. Dolgov, Phys. Atom. Nucl. 73, 588 (2010). arXiv:0903.4318 [hep-ph]
  44. A. Dolgov, K. Freese, Phys. Rev. D 51, 2693 (1995) [hep-ph/9410346]Google Scholar
  45. A.D. Dolgov, S.H. Hansen, Nucl. Phys. B 548, 408 (1999) [hep-ph/9810428]Google Scholar
  46. A.D. Dolgov, P.D. Naselsky, I.D. Novikov (2000). astro-ph/0009407
  47. A. Dolgov, D.N. Pelliccia, Nucl. Phys. B 734, 208 (2006) [hep-th/0502197]Google Scholar
  48. A. Dolgov, K. Freese, R. Rangarajan, M. Srednicki, Phys. Rev. D 56, 6155 (1997) [hep-ph/9610405]Google Scholar
  49. R. Duperray, B. Baret, D. Maurin, G. Boudoul, A. Barrau, L. Derome, K. Protasov, M. Buenerd, Phys. Rev. D 71, 083013 (2005) [astro-ph/0503544]Google Scholar
  50. G.R. Dvali, G. Gabadadze, Phys. Lett. B 460, 47 (1999) [hep-ph/9904221]Google Scholar
  51. J.R. Ellis, J.E. Kim, D.V. Nanopoulos, Phys. Lett. B 145, 181 (1984)CrossRefADSGoogle Scholar
  52. A. Frebel, N. Christlieb, J.E. Norris, C. Thom, T.C. Beers, J. Rhee, Astrophys. J. 660, L117 (2007) [astro-ph/0703414]Google Scholar
  53. V.P. Frolov, I.D. Novikov, Black Hole Physics: Basic Concepts and New Developments (Kluwer Academic, Dordrecht, 1998)zbMATHCrossRefGoogle Scholar
  54. M. Fukugita, S. Yanagita, Phys. Lett. B 174, 45 (1986)CrossRefADSGoogle Scholar
  55. M. Gell-Mann, P. Ramond, R. Slansky, in Supergravity, eds. by D. Freedman, P. Van Niuwenhuizen (North Holland, Amsterdam, 1979)Google Scholar
  56. S.L. Glashow, in 1979 Cargése Lectures in Physics—Quarks and Leptons, eds. by M. Lévy et al. (Plenum, New York, 1980)Google Scholar
  57. G.W. Gibbons, S.W. Hawking, Phys. Rev. D 15, 2738 (1977)MathSciNetCrossRefADSGoogle Scholar
  58. S.W. Hawking, Nature 248, 30 (1974)CrossRefADSGoogle Scholar
  59. S.W. Hawking, Commun. Math. Phys. 43, 199 (1975) [Erratum-ibid. 46, 206 (1976)]Google Scholar
  60. G. ’t Hooft, Phys. Rev. Lett. 37, 8 (1976a)Google Scholar
  61. G. ’t Hooft, Phys. Rev. D 14, 3432 (1976b) [Erratum-ibid. D 18, 2199 (1978)]Google Scholar
  62. Y.I. Izotov, G. Stasinska, N.G. Guseva, Astron. Astrophys. 558, A57 (2013). arXiv:1308.2100 [astro-ph.CO]
  63. J. Kalirai, Nature 486, 90 (2012). arXiv:1205.6802 [astro-ph.GA]
  64. A. Kalweit, Light hyper- and anti-nuclei production at the LHC measured with ALICE (2014). https://indico.cern.ch/event/328442
  65. M.Y. Khlopov, A.D. Linde, Phys. Lett. B 138, 265 (1984)CrossRefADSGoogle Scholar
  66. D.A. Kirzhnits, JETP Lett. 15, 529 (1972) [Pisma Zh. Eksp. Teor. Fiz. 15, 745 (1972)]Google Scholar
  67. D.A. Kirzhnits, A.D. Linde, Phys. Lett. B 42, 471 (1972)CrossRefADSGoogle Scholar
  68. F.R. Klinkhamer, N.S. Manton, Phys. Rev. D 30, 2212 (1984)CrossRefADSGoogle Scholar
  69. M. Kobayashi, T. Maskawa, Prog. Theor. Phys. 49, 652 (1973)CrossRefADSGoogle Scholar
  70. V.A. Kuzmin, V.A. Rubakov, M.E. Shaposhnikov, Phys. Lett. B 155, 36 (1985)CrossRefADSGoogle Scholar
  71. L.D. Landau, Nucl. Phys. 3, 127 (1957)CrossRefGoogle Scholar
  72. T.D. Lee, Phys. Rept. 9, 143 (1974)CrossRefADSGoogle Scholar
  73. T.D. Lee, C.N. Yang, Phys. Rev. 104, 254 (1956)CrossRefADSGoogle Scholar
  74. A.D. Linde, Phys. Lett. B 116, 335 (1982)MathSciNetCrossRefADSGoogle Scholar
  75. G. Luders, Kong. Dan. Vid. Sel. Mat. Fys. Med. 28N5, 1 (1954)Google Scholar
  76. G. Luders, Annals Phys. 2, 1 (1957) [Annals Phys. 281, 1004 (2000)]Google Scholar
  77. N.S. Manton, Phys. Rev. D 28, 2019 (1983)MathSciNetCrossRefADSGoogle Scholar
  78. N. Martin, ALICE collaboration. J. Phys. Conf. Ser. 455, 012007 (2013)CrossRefADSGoogle Scholar
  79. S. Matsuura, A.D. Dolgov, S. Nagataki, K. Sato, Prog. Theor. Phys. 112, 971 (2004) [astro-ph/0405459]Google Scholar
  80. S. Matsuura, S.I. Fujimoto, M.A. Hashimoto, K. Sato, Phys. Rev. D 75, 068302 (2007). 0704.0635 [astro-ph]Google Scholar
  81. S. Matsuura, S.I. Fujimoto, S. Nishimura, M.A. Hashimoto, K. Sato, Phys. Rev. D 72, 123505 (2005) [astro-ph/0507439]Google Scholar
  82. F. Melia, Astron. J. 147, 120 (2014). arXiv:1403.0908 [astro-ph.CO]
  83. P. Minkowski, Phys. Lett. B 67, 421 (1977)CrossRefADSGoogle Scholar
  84. D.J. Mortlock et al., Nature 474, 616 (2011). arXiv:1106.6088 [astro-ph.CO]
  85. R. Nakamura, M.a. Hashimoto, S.i. Fujimoto, N. Nishimura, K. Sato. arXiv:1007.0466 [astro-ph.CO]
  86. K.A. Olive et al., Particle data group collaboration. Chin. Phys. C 38, 090001 (2014)CrossRefADSGoogle Scholar
  87. R. Omnes, Phys. Rev. Lett. 23, 38 (1969)zbMATHCrossRefADSGoogle Scholar
  88. R. Omnes, Phys. Rev. D 1, 723 (1970)CrossRefADSGoogle Scholar
  89. D.N. Page, Phys. Rev. D 13, 198 (1976)CrossRefADSGoogle Scholar
  90. E.A. Paschos, Pramana 62, 359 (2004) [hep-ph/0308261]Google Scholar
  91. W. Pauli, in Niels Bohr and the Development of Physics (McGraw-Hill, New York, 1955)Google Scholar
  92. P. Picozza, A. Morselli, J. Phys. Conf. Ser. 120, 042004 (2008)CrossRefADSGoogle Scholar
  93. A. Riotto, M. Trodden, Ann. Rev. Nucl. Part. Sci. 49, 35 (1999) [hep-ph/9901362]Google Scholar
  94. V.A. Rubakov, M.E. Shaposhnikov, Usp. Fiz. Nauk 166, 493 (1996) [Phys. Usp. 39, 461 (1996)] [hep-ph/9603208]Google Scholar
  95. A.D. Sakharov, Pisma Zh. Eksp. Teor. Fiz. 5, 32 (1967) [JETP Lett. 5, 24 (1967)]Google Scholar
  96. M. Sasaki et al., Adv. Space Res. 42, 450 (2008)CrossRefADSGoogle Scholar
  97. A. Schuster, Nature 58, 367 (1898)CrossRefADSGoogle Scholar
  98. J.S. Schwinger, Phys. Rev. 82, 914 (1951)zbMATHMathSciNetCrossRefADSGoogle Scholar
  99. A. Seth et al., Nature 513, 398 (2014). arXiv:1409.4769 [astro-ph.GA]
  100. G. Steigman, Ann. Rev. Astron. Astrophys. 14, 339 (1976)CrossRefADSGoogle Scholar
  101. G. Steigman, JCAP 0810, 001 (2008). 0808.1122 [astro-ph]Google Scholar
  102. J. Strader et al., Astrophys. J. 775, L6 (2013). arXiv:1307.7707 [astro-ph.CO]
  103. A. Vilenkin, L.H. Ford, Phys. Rev. D 26, 1231 (1982)MathSciNetCrossRefADSGoogle Scholar
  104. C.S. Wu, E. Ambler, R.W. Hayward, D.D. Hoppes, R.P. Hudson, Phys. Rev. 105, 1413 (1957)CrossRefADSGoogle Scholar
  105. T. Yanagida, in Proceedings of the Workshop on Unified Theories and Baryon Number in the Universe, eds. by O. Sawada, A. Sugamoto (KEK, Tsukuba, Japan, 1979)Google Scholar
  106. Y.B. Zeldovich, Pisma. Zh. Eksp. Teor. Fiz. 24, 29 (1976a)Google Scholar
  107. Y.B. Zeldovich, Phys. Lett. A 59, 254 (1976b)Google Scholar
  108. Y.B. Zeldovich, Zh Eksp, Teor. Fiz. 72, 18 (1977)Google Scholar
  109. Y.B. Zeldovich, I.Y. Kobzarev, L.B. Okun, Zh. Eksp. Teor. Fiz. 67, 3 (1974) [Sov. Phys. JETP 40, 1 (1974)]Google Scholar
  110. W. Zheng et al., Nature 489, 406 (2012). arXiv:1204.2305 [astro-ph.CO]

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of PhysicsFudan UniversityShanghaiChina
  2. 2.Dipartimento di Fisica e Scienze della TerraUniversità degli Studi di FerraraFerraraItaly
  3. 3.Department of PhysicsNovosibirsk State UniversityNovosibirskRussia

Personalised recommendations