Recurrence Function on Sturmian Words: A Probabilistic Study

  • Valérie Berthé
  • Eda Cesaratto
  • Pablo Rotondo
  • Brigitte Vallée
  • Alfredo Viola
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9234)

Abstract

This paper is a first attempt to describe the probabilistic behaviour of a random Sturmian word. It performs the probabilistic analysis of the recurrence function which provides precise information on the structure of such a word. With each Sturmian word of slope \(\alpha \), we associate particular sequences of factor lengths which have a given “position” with respect to the sequence of continuants of \(\alpha \), we then let \(\alpha \) to be uniformly drawn inside the unit interval [0,1]. This probabilistic model is well-adapted to better understand the role of the position in the recurrence properties.

References

  1. 1.
    Adamczewski, B., Allouche, J.-P.: Reversals and palindromes in continued fractions, heoret. Comput. Sci. 380, 220–237 (2007)MathSciNetMATHGoogle Scholar
  2. 2.
    Bourdon, J., Daireaux, B., Vallée, B.: Dynamical analysis of \(\alpha \)-Euclidean algorithms. J. Algorithms 44, 246–285 (2002)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Cassaigne, J.: Limit values of the recurrent quotient of Sturmian sequences. Theoret. Comput. Sci. 218, 3–12 (1999)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Cesaratto, E., Vallée, B.: Pseudo-randomness of a random Kronecker sequence. An instance of dynamical analysis, Chapter 11. In: Berthé, V., Rigo, M. (eds.) Combinatorics, Words and Symbolic Dynamics in the book Combinatorics, Words and Symbolic Dynamics, pp. 405–448. Cambridge University Press (To appear)Google Scholar
  5. 5.
    Flajolet, P., Vallée, B.: Continued fraction algorithms, functional operators, and structure constants. Theoret. Comput. Sci. 94, 1–34 (1998)CrossRefGoogle Scholar
  6. 6.
    Losifescu, M., Kraaikamp, C.: Metrical Theory of Continued Fractions, Collection Mathematics and Its Applications. Kluwer Academic Press, Dordrecht (2002)CrossRefGoogle Scholar
  7. 7.
    Lévy, P.: Sur le développement en fraction continue d’un nombre choisi au hasard. Compos. Math. 3, 286–303 (1936)Google Scholar
  8. 8.
    Lothaire, M.: Algebraic Combinatorics on Words. Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (2002)CrossRefMATHGoogle Scholar
  9. 9.
    Morse, M., Hedlund, G.: Symbolics dynamics II. Sturmian trajectories. Am. J. Math. 62, 1–42 (1940)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Vallée, B.: Dynamique des fractions continues à contraintes périodiques. J. Number Theor. 72(2), 183–235 (1998)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Valérie Berthé
    • 1
  • Eda Cesaratto
    • 2
  • Pablo Rotondo
    • 3
  • Brigitte Vallée
    • 4
  • Alfredo Viola
    • 3
  1. 1.LIAFA, CNRS UMR 7089University Paris DiderotParisFrance
  2. 2.Conicet and Universidad Nacional de General SarmientoBuenos AiresArgentina
  3. 3.Universidad de la RepúblicaMontevideoUruguay
  4. 4.GREYC, CNRS UMR 6072University de CaenCaenFrance

Personalised recommendations