When Are Prime Formulae Characteristic?

  • L. Aceto
  • D. Della Monica
  • I. Fábregas
  • A. Ingólfsdóttir
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9234)

Abstract

In the setting of the modal logic that characterizes modal refinement over modal transition systems, Boudol and Larsen showed that the formulae for which model checking can be reduced to preorder checking, that is, the characteristic formulae, are exactly the consistent and prime ones. This paper presents general, sufficient conditions guaranteeing that characteristic formulae are exactly the consistent and prime ones. It is shown that the given conditions apply to the logics characterizing all the semantics in van Glabbeek’s branching-time spectrum.

References

  1. 1.
    Aceto, L., Della Monica, D., Fábregas, I., Ingólfsdóttir, A.: When are prime formulae characteristic? (extended version). http://www.icetcs.ru.is/dario/techrep/lc15.pdf
  2. 2.
    Aceto, L., Fábregas, I., de Frutos Escrig, D., Ingólfsdóttir, A., Palomino, M.: Graphical representation of covariant-contravariant modal formulas. In: Proceedings of the 18th EXPRESS. EPTCS, vol. 64, pp. 1–15 (2011)Google Scholar
  3. 3.
    Aceto, L., Ingólfsdóttir, A., Larsen, K.G., Srba, J.: Reactive Systems: Modelling, Specification and Verification. Cambridge University Press, New York (2007)CrossRefGoogle Scholar
  4. 4.
    Bloom, B., Istrail, S., Meyer, A.R.: Bisimulation can’t be traced. J. ACM 42(1), 232–268 (1995)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Boudol, G., Larsen, K.G.: Graphical versus logical specifications. Theor. Comput. Sci. 106(1), 3–20 (1992)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)Google Scholar
  7. 7.
    Cleaveland, R., Steffen, B.: Computing behavioural relations, logically. In: Albert, J.L., Monien, B., Artalejo, M.R. (eds.) Automata, Languages and Programming. LNCS, vol. 510, pp. 127–138. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  8. 8.
    de Frutos-Escrig, D., Gregorio-Rodríguez, C., Palomino, M., Romero-Hernández, D.: Unifying the linear time-branching time spectrum of process semantics. Logical Methods Comput. Sci. 9(2), 1–74 (2013)CrossRefGoogle Scholar
  9. 9.
    van Glabbeek, R.J.: The linear time-branching time spectrum I: The semantics of concrete, sequential processes. In: Handbook of Process Algebra, pp. 3–99. Elsevier (2001)Google Scholar
  10. 10.
    Graf, S., Sifakis, J.: A modal characterization of observational congruence on finite terms of CCS. Inf. Control 68(1–3), 125–145 (1986)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Keller, R.M.: Formal verification of parallel programs. Commun. ACM 19(7), 371–384 (1976)CrossRefMATHGoogle Scholar
  12. 12.
    Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput. 94(1), 1–28 (1991)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Steffen, B., Ingólfsdóttir, A.: Characteristic formulae for processes with divergence. Inf. Comput. 110(1), 149–163 (1994)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • L. Aceto
    • 1
  • D. Della Monica
    • 1
  • I. Fábregas
    • 1
  • A. Ingólfsdóttir
    • 1
  1. 1.ICE-TCS, School of Computer ScienceReykjavik UniversityReykjavikIceland

Personalised recommendations