Classes of Languages Generated by the Kleene Star of a Word

  • Laure Daviaud
  • Charles PapermanEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9234)


In this paper, we study the lattice and the Boolean algebra, possibly closed under quotient, generated by the languages of the form \(u^*\), where u is a word. We provide effective equational characterisations of these classes, i.e. one can decide using our descriptions whether a given regular language belongs or not to each of them.


Normal Form Boolean Algebra Regular Language Finite Union Finite Intersection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Almeida, J., Volkov, M.V.: Profinite identities for finite semigroups whose subgroups belong to a given pseudovariety. J. Algebra Appl. 2(2), 137–163 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Almeida, J., Weil, P.: Relatively free profinite monoids: an introduction and examples. In: Semigroups, Formal Languages and Groups (York, 1993), of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 466, pp. 73–117. Kluwer Acad. Publ., Dordrecht (1995)Google Scholar
  3. 3.
    Gehrke, M., Grigorieff, S., Pin, J.É.: Duality and equational theory of regular languages. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 246–257. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  4. 4.
    Honkala, J.: On slender languages. In: Paun, B., Rozenberg, G., Salomaa, A. (eds.)Current Trends in Theoretical Computer Science, pp. 708–716. World Scientific Publishing, River Edge (2001)Google Scholar
  5. 5.
    Pin, J.É.: Mathematical foundations of automata theory.
  6. 6.
    Pin, J.É.: Profinite methods in automata theory. In: Albers, S., Marion, J.-Y. (eds.) 26th International Symposium on Theoretical Aspects of Computer Science (STACS 2009), pp. 31–50. Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany (2009)Google Scholar
  7. 7.
    Pin, J.É., Straubing, H., Thérien, D.: Some results on the generalized star-height problem. Inf. Comput. 101, 219–250 (1992)CrossRefzbMATHGoogle Scholar
  8. 8.
    Reilly, N.R., Zhang, S.: Decomposition of the lattice of pseudovarieties of finite semigroups induced by bands. Algebra Univers. 44(3–4), 217–239 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Reiterman, J.: The Birkhoff theorem for finite algebras. Algebra Univers. 14(1), 1–10 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Schützenberger, M.P.: On finite monoids having only trivial subgroups. Inf. Control 8, 190–194 (1965)CrossRefzbMATHGoogle Scholar
  11. 11.
    Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Language Theory, vol. 1, chap. 2, pp. 679–746. Springer, Heidelberg (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.LIF, UMR7279, CNRSAix-Marseille UniversitéMarseilleFrance
  2. 2.Warsaw UniversityWarsawPoland

Personalised recommendations