International Symposium on Mathematical Foundations of Computer Science

MFCS 2015: Mathematical Foundations of Computer Science 2015 pp 62-74 | Cite as

On the Complexity of Hub Labeling (Extended Abstract)

  • Maxim Babenko
  • Andrew V. Goldberg
  • Haim Kaplan
  • Ruslan Savchenko
  • Mathias Weller
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9235)

Abstract

Hub Labeling (HL) is a data structure for distance oracles. Hierarchical HL (HHL) is a special type of HL, that received a lot of attention from a practical point of view. However, theoretical questions such as NP-hardness and approximation guarantees for HHL algorithms have been left aside. We study the computational complexity of HL and HHL. We prove that both HL and HHL are NP-hard, and present upper and lower bounds on the approximation ratios of greedy HHL algorithms that are used in practice. We also introduce a new variant of the greedy HHL algorithm that produces small labels for graphs with small highway dimension.

References

  1. 1.
    Abraham, I., Delling, D., Fiat, A., Goldberg, A.V., Werneck, R.F.: Highway dimension and provably efficient shortest path algorithms. TR MSR-TR-2013-91, Microsoft Research (2013)Google Scholar
  2. 2.
    Abraham, I., Delling, D., Fiat, A., Goldberg, A.V., Werneck, R.F.: VC-dimension and shortest path algorithms. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 690–699. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  3. 3.
    Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: A hub-based labeling algorithm for shortest paths in road networks. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 230–241. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  4. 4.
    Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: Hierarchical hub labelings for shortest paths. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 24–35. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  5. 5.
    Abraham, I., Fiat, A., Goldberg, A.V., Werneck, R.F.: Highway dimension, shortest paths, and provably efficient algorithms. In: Proceedings of the 21st ACM-SIAM Symposium on Discrete Algorithms, pp. 782–793 (2010)Google Scholar
  6. 6.
    Akiba, T., Iwata, Y., Yoshida, Y.: Fast exact shortest-path distance queries on large networks by pruned landmark labeling. In: SIGMOD 2013, pp. 349–360. ACM, New York (2013)Google Scholar
  7. 7.
    Babenko, M., Goldberg, A.V., Gupta, A., Nagarajan, V.: Algorithms for hub label optimization. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part I. LNCS, vol. 7965, pp. 69–80. Springer, Heidelberg (2013) Google Scholar
  8. 8.
    Babenko, M., Goldberg, A.V., Kaplan, H., Savchenko, R., Weller, M.: On the Complexity of Hub Labeling (2015). http://arxiv.org/abs/1501.02492 [cs.DS]
  9. 9.
    Cohen, E., Halperin, E., Kaplan, H., Zwick, U.: Reachability and distance queries via 2-hop labels. SIAM J. Comput. 32(5), 1338–1355 (2003)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Delling, D., Goldberg, A.V., Pajor, T., Werneck, R.F.: Robust exact distance queries on massive networks. TR MSR-TR-2014-12, Microsoft Research (2014)Google Scholar
  11. 11.
    Delling, D., Goldberg, A.V., Savchenko, R., Werneck, R.F.: Hub labels: theory and practice. In: Gudmundsson, J., Katajainen, J. (eds.) SEA 2014. LNCS, vol. 8504, pp. 259–270. Springer, Heidelberg (2014) Google Scholar
  12. 12.
    Gallo, G., Grigoriadis, M.D., Tarjan, R.E.: A fast parametric maximum flow algorithm and applications. SIAM J. Comput. 18, 30–55 (1989)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Gavoille, C., Peleg, D., Pérennes, S., Raz, R.: Distance labeling in graphs. J. Algorithms 53(1), 85–112 (2004)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Goldberg, A.V., Razenshteyn, I., Savchenko, R.: Separating hierarchical and general hub labelings. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013. LNCS, vol. 8087, pp. 469–479. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  15. 15.
    Kortsarz, G., Peleg, D.: Generating sparse 2-spanners. J. Alg. 17, 222–236 (1994)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Peleg, D.: Proximity-preserving labeling schemes. J. Gr. Th. 33(3), 167–176 (2000)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Maxim Babenko
    • 1
  • Andrew V. Goldberg
    • 2
  • Haim Kaplan
    • 3
  • Ruslan Savchenko
    • 4
  • Mathias Weller
    • 5
  1. 1.Yandex and Higher School of EconomicsMoscowRussia
  2. 2.Amazon.com, Inc.E. Palo AltoUSA
  3. 3.School of Computer ScienceTel Aviv UniversityTel Aviv-YafoIsrael
  4. 4.YandexMoscowRussia
  5. 5.LIRMMUniversité Montpellier IIMontpellierFrance

Personalised recommendations