Advertisement

Visibly Counter Languages and the Structure of \(\mathrm {NC}^{1}\)

  • Michael Hahn
  • Andreas Krebs
  • Klaus-Jörn Lange
  • Michael Ludwig
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9235)

Abstract

We extend the familiar program of understanding circuit complexity in terms of regular languages to visibly counter languages. Like the regular languages, the visibly counter languages are \(\mathrm {NC}^{1}\)- complete. We investigate what the visibly counter languages in certain constant depth circuit complexity classes are. We have initiated this in a previous work for \(\mathrm {AC}^{0}\). We present characterizations and decidability results for various logics and circuit classes. In particular, our approach yields a way to understand \(\mathrm {TC}^{0}\), where the regular approach fails.

Keywords

Word Problem Logic Class Regular Language Pushdown Automaton Nonsolvable Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Babai, L. (eds.) STOC, pp. 202–211. ACM (2004)Google Scholar
  2. 2.
    Bárány, V., Löding, C., Serre, O.: Regularity problems for visibly pushdown languages. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 420–431. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  3. 3.
    David, A., Barrington, M.: Bounded-Width Polynomial-Size Branching Programs Recognize Exactly Those Languages in NC\(^1\). J. Comput. Syst. Sci. 38(1), 150–164 (1989)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    David, A., Thérien, D., Straubing, H., Compton, K.J., Barrington, M.: Regular Languages in NC\(^1\). J. Comput. Syst. Sci. 44(3), 478–499 (1992)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    David, A., Thérien, D., Barrington, M.: Finite monoids and the fine structure of NC\(^{\text{1 }}\). J. ACM 35(4), 941–952 (1988)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Furst, M.L., Saxe, J.B., Sipser, M.: Parity, circuits, and the polynomial-time hierarchy. In: FOCS, pp. 260–270 (1981)Google Scholar
  7. 7.
    Håstad, J.: Almost optimal lower bounds for small depth circuits. In: STOC, pp. 6–20. ACM (1986)Google Scholar
  8. 8.
    Krebs, A., Lange, K., Ludwig, M.: Visibly Counter Languages and Constant Depth Circuits. In: Mayr, E.W., Ollinger, N. (eds.) 32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015), Garching, Germany, vol. 30 of LIPIcs, pp. 594–607. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 4–7 March 2015Google Scholar
  9. 9.
    McKenzie, P., Thomas, M., Vollmer, H.: Extensional uniformity for boolean circuits. SIAM J. Comput. 39(7), 3186–3206 (2010)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Mehlhorn, K.: Pebbling mountain ranges and its application to DCFL-recognition. In: de Bakker, J., van Leeuwen, J. (eds.) Automata Languages and Programming. LNCS, pp. 422–435. Springer, Berlin Heidelberg (1980)CrossRefGoogle Scholar
  11. 11.
    Smolensky, R.: Algebraic methods in the theory of lower bounds for boolean circuit complexity. In: STOC, pp. 77–82 (1987)Google Scholar
  12. 12.
    Straubing, H.: Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser, Boston (1994)CrossRefMATHGoogle Scholar
  13. 13.
    Vollmer, H.: Introduction to Circuit Complexity - A Uniform Approach. Texts in theoretical computer science. Springer, Heidelberg (1999)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Michael Hahn
    • 1
  • Andreas Krebs
    • 1
  • Klaus-Jörn Lange
    • 1
  • Michael Ludwig
    • 1
  1. 1.WSI - University of TübingenTübingenGermany

Personalised recommendations