International Symposium on Mathematical Foundations of Computer Science

MFCS 2015: Mathematical Foundations of Computer Science 2015 pp 348-360 | Cite as

Algorithmic Applications of Tree-Cut Width

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9235)

Abstract

The recently introduced graph parameter tree-cut width plays a similar role with respect to immersions as the graph parameter treewidth plays with respect to minors. In this paper we provide the first algorithmic applications of tree-cut width to hard combinatorial problems. Tree-cut width is known to be lower-bounded by a function of treewidth, but it can be much larger and hence has the potential to facilitate the efficient solution of problems which are not known to be fixed-parameter tractable (FPT) when parameterized by treewidth. We introduce the notion of nice tree-cut decompositions and provide FPT algorithms for the showcase problems Capacitated Vertex Cover, Capacitated Dominating Set and Imbalance parameterized by the tree-cut width of an input graph G. On the other hand, we show that List Coloring, Precoloring Extension and Boolean CSP (the latter parameterized by the tree-cut width of the incidence graph) are W[1]-hard and hence unlikely to be fixed-parameter tractable when parameterized by tree-cut width.

References

  1. 1.
    Biedl, T., Chan, T., Ganjali, Y., Hajiaghayi, M.T., Wood, D.R.: Balanced vertex-orderings of graphs. DAM 148(1), 27–48 (2005)MathSciNetMATHGoogle Scholar
  2. 2.
    Biró, M., Hujter, M., Tuza, Z.: Precoloring extension. i. Interval graphs. Discrete Math. 100(1–3), 267–279 (1992)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Diestel, R.: Graph Theory. Graduate Texts in Mathematics. Springer, New York (2000) MATHGoogle Scholar
  4. 4.
    Dom, M., Lokshtanov, D., Saurabh, S., Villanger, Y.: Capacitated domination and covering: a parameterized perspective. In: Grohe, M., Niedermeier, R. (eds.) IWPEC 2008. LNCS, vol. 5018, pp. 78–90. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  5. 5.
    Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer, London (2013) CrossRefMATHGoogle Scholar
  6. 6.
    Erdős, P., Rubin, A.L., Taylor, H.: Choosability in graphs. Congressus Numerantium 26, 125–157 (1979)MATHGoogle Scholar
  7. 7.
    Fellows, M.R., Fomin, F.V., Lokshtanov, D., Rosamond, F., Saurabh, S., Szeider, S., Thomassen, C.: On the complexity of some colorful problems parameterized by treewidth. Inf. Comput. 209(2), 143–153 (2011)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Fellows, M.R., Lokshtanov, D., Misra, N., Rosamond, F.A., Saurabh, S.: Graph layout problems parameterized by vertex cover. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 294–305. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  9. 9.
    Frank, A., Tardos, É.: An application of simultaneous diophantine approximation in combinatorial optimization. Combinatorica 7(1), 49–65 (1987)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Grohe, M., Kawarabayashi, K.-I., Marx, D., Wollan, P.: Finding topological subgraphs is fixed-parameter tractable. In: STOC 2011–Proceedings of the 43rd ACM Symposium on Theory of Computing, pp. 479–488. ACM, New York (2011)Google Scholar
  11. 11.
    Kannan, R.: Minkowski’s convex body theorem and integer programming. Math. Oper. Res. 12(3), 415–440 (1987)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Kim, E., Oum, S.-I., Paul, C., Sau, I., Thilikos, D.: FPT 2-approximation for constructing tree-cut decomposition (2014, Submitted) ManuscriptGoogle Scholar
  13. 13.
    Kloks, T.: Treewidth: Computations and Approximations. Springer, Heidelberg (1994) CrossRefMATHGoogle Scholar
  14. 14.
    Lenstra, H.: Integer programming with a fixed number of variables. Math. Oper. Res. 8, 538–548 (1983)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Lokshtanov, D., Misra, N., Saurabh, S.: Imbalance is fixed parameter tractable. Inf. Process. Lett. 113(19–21), 714–718 (2013)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Marx, D., Wollan, P.: Immersions in highly edge connected graphs. SIAM J. Discrete Math. 28(1), 503–520 (2014)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Nash-Williams, C.S.J.A.: On well-quasi-ordering finite trees. Proc. Cambridge Philos. Soc. 59, 833–835 (1963)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Nešetřil, J., de Mendez, P.O.: Tree-depth, subgraph coloring and homomorphism bounds. European J. Combin. 27(6), 1024–1041 (2006)MathSciNetMATHGoogle Scholar
  19. 19.
    Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width. J. Algorithms 7(3), 309–322 (1986)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Samer, M., Szeider, S.: Constraint satisfaction with bounded treewidth revisited. J. Comput. Syst. Sci. 76(2), 103–114 (2010)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Wollan, P.: The structure of graphs not admitting a fixed immersion. J. Comb. Theo. Ser. B 110, 47–66 (2015). http://arxiv.org/abs/1302.3867 (2013)

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Algorithms and Complexity GroupTU WienAustria
  2. 2.CNRSUniversité Paris-DauphineParisFrance

Personalised recommendations