When Bitcoin Mining Pools Run Dry

A Game-Theoretic Analysis of the Long-Term Impact of Attacks Between Mining Pools
  • Aron LaszkaEmail author
  • Benjamin Johnson
  • Jens Grossklags
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8976)


Bitcoin has established itself as the most successful cryptocurrency with adoption seen in many commercial scenarios. While most stakeholders have jointly benefited from the growing importance of Bitcoin, conflicting interests continue to negatively impact the ecosystem. In particular, incentives to derive short-term profits from attacks on mining pools threaten the long-term viability of Bitcoin.

We develop a game-theoretic model that allows us to capture short-term as well as long-term impacts of attacks against mining pools. Using this model, we study the conditions under which the mining pools have no incentives to launch attacks against each other (i.e., peaceful equilibria), and the conditions under which one mining pool is marginalized by attacks (i.e., one-sided attack equilibria). Our results provide guidelines for ensuring that the Bitcoin ecosystem remains long-term viable and trustworthy.


Bitcoin Mining Attacks DDoS Game theory 



We thank the reviewers for their detailed feedback. This work was supported in part by the National Science Foundation under Award CNS-1238959.


  1. 1.
    Bensoussan, A., Kantarcioglu, M., Hoe, S.R.C.: A game-theoretical approach for finding optimal strategies in a botnet defense model. In: Alpcan, T., Buttyán, L., Baras, J.S. (eds.) GameSec 2010. LNCS, vol. 6442, pp. 135–148. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  2. 2.
    Böhme, R., Christin, N., Edelman, B., Moore, T.: Bitcoin. J. Econ. Perspect. (forthcoming)Google Scholar
  3. 3.
    Christin, N., Grossklags, J., Chuang, J.: Near rationality and competitive equilibria in networked systems. In: Proceedings of the ACM SIGCOMM Workshop on Practice and Theory of Incentives in Networked Systems, pp. 213–219 (2004)Google Scholar
  4. 4.
    Clark, D., Konrad, K.: Asymmetric conflict: weakest link against best shot. J. Conflict Resolut. 51(3), 457–469 (2007)CrossRefGoogle Scholar
  5. 5.
    Fultz, N., Grossklags, J.: Blue versus red: towards a model of distributed security attacks. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 167–183. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  6. 6.
    Goldfarb, A.: The medium-term effects of unavailability. Quant. Mark. Econ. 4(2), 143–171 (2006)CrossRefGoogle Scholar
  7. 7.
    Grossklags, J., Christin, N., Chuang, J.: Secure or insure? A game-theoretic analysis of information security games. In: Proceedings of the 2008 World Wide Web Conference (WWW 2008), pp. 209–218, April 2008Google Scholar
  8. 8.
    Huang, D.Y., Dharmdasani, H., Meiklejohn, S., Dave, V., Grier, C., McCoy, D., Savage, S., Weaver, N., Snoeren, A.C., Levchenko, K.: Botcoin: monetizing stolen cycles. In: Proceedings of the 2014 Network and Distributed System Security Symposium (NDSS) (2014)Google Scholar
  9. 9.
    Johnson, B., Laszka, A., Grossklags, J., Vasek, M., Moore, T.: Game-theoretic analysis of DDoS attacks against bitcoin mining pools. In: Böhme, R., Brenner, M., Moore, T., Smith, M. (eds.) FC 2014 Workshops. LNCS, vol. 8438, pp. 72–86. Springer, Heidelberg (2014) Google Scholar
  10. 10.
    Laszka, A., Felegyhazi, M., Buttyán, L.: A survey of interdependent information security games. ACM Comput. Surv. 47(2), 23:1–23:38 (2014)CrossRefGoogle Scholar
  11. 11.
    Li, Z., Liao, Q., Blaich, A., Striegel, A.: Fighting botnets with economic uncertainty. Secur. Commun. Networks 4(10), 1104–1113 (2011)CrossRefGoogle Scholar
  12. 12.
    Litke, P., Stewart, J.: BGP hijacking for cryptocurrency profit, August 2014.
  13. 13.
    Liu, P., Zang, W., Yu, M.: Incentive-based modeling and inference of attacker intent, objectives, and strategies. ACM Trans. Inf. Syst. Secur. 8(1), 78–118 (2005)CrossRefGoogle Scholar
  14. 14.
    Manshaei, M., Zhu, Q., Alpcan, T., Bacşar, T., Hubaux, J.P.: Game theory meets network security and privacy. ACM Comput. Surv. 45(3), 25:1–25:39 (2013)CrossRefGoogle Scholar
  15. 15.
    Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008).
  16. 16.
    Plohmann, D., Gerhards-Padilla, E.: Case study of the miner botnet. In: Proceedings of the 4th International Conference on Cyber Conflict (CYCON), pp. 345–360 (2012)Google Scholar
  17. 17.
    Schechter, S.E., Smith, M.D.: How much security is enough to stop a thief? In: Wright, R.N. (ed.) FC 2003. LNCS, vol. 2742, pp. 122–137. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  18. 18.
    Schelling, T.: The Strategy of Conflict. Oxford University Press, Oxford (1965) Google Scholar
  19. 19.
    Spyridopoulos, T., Karanikas, G., Tryfonas, T., Oikonomou, G.: A game theoretic defence framework against DoS/DDoS cyber attacks. Comput. Secur. 38, 39–50 (2013)CrossRefGoogle Scholar
  20. 20.
    Vasek, M., Thornton, M., Moore, T.: Empirical analysis of denial-of-service attacks in the bitcoin ecosystem. In: Böhme, R., Brenner, M., Moore, T., Smith, M. (eds.) FC 2014 Workshops. LNCS, vol. 8438, pp. 57–71. Springer, Heidelberg (2014) Google Scholar
  21. 21.
    Wu, Q., Shiva, S., Roy, S., Ellis, C., Datla, V.: On modeling and simulation of game theory-based defense mechanisms against DoS and DDoS attacks. In: Proceedings of the 2010 Spring Simulation Multiconference, pp. 159:1–159:8 (2010)Google Scholar

Copyright information

© International Financial Cryptography Association 2015

Authors and Affiliations

  • Aron Laszka
    • 1
    Email author
  • Benjamin Johnson
    • 2
  • Jens Grossklags
    • 3
  1. 1.Institute for Software Integrated SystemsVanderbilt UniversityNashvilleUSA
  2. 2.CyLabCarnegie Mellon UniversityPittsburghUSA
  3. 3.College of Information Sciences and TechnologyPennsylvania State UniversityUniversity ParkUSA

Personalised recommendations