Statistical Concurrent Non-malleable Zero-Knowledge from One-Way Functions

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9216)

Abstract

Concurrent non-malleable zero-knowledge (\(\mathrm {CNMZK}\)) protocols are zero-knowledge protocols that are secure even when the adversary interacts with multiple provers and verifiers simultaneously. Recently, the first statistical \(\mathrm {CNMZK}\) argument for \(\mathcal {NP}\) was constructed by Orlandi et al. (TCC’14) under the DDH assumption.

In this paper, we construct a statistical \(\mathrm {CNMZK}\) argument for \(\mathcal {NP}\) assuming only the existence of one-way functions. The security is proven via black-box simulation, and the round complexity is \(\mathsf {poly}(n)\). Under the existence of collision-resistant hash functions, the round complexity can be reduced to \(\omega (\log n)\), which is essentially optimal for black-box concurrent zero-knowledge.

References

  1. 1.
    Barak, B., Prabhakaran, M., Sahai, A.: Concurrent non-malleable zero knowledge. In: FOCS, pp. 345–354 (2006)Google Scholar
  2. 2.
    Blum, M.: How to prove a theorem so no one else can claim it. In: International Congress of Mathematicians, pp. 1444–1451 (1987)Google Scholar
  3. 3.
    Canetti, R., Kilian, J., Petrank, E., Rosen, A.: Black-box concurrent zero-knowledge requires (almost) logarithmically many rounds. SIAM J. Comput. 32(1), 1–47 (2002)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Canetti, R., Lin, H., Pass, R.: Adaptive hardness and composable security in the plain model from standard assumptions. In: FOCS, pp. 541–550 (2010)Google Scholar
  5. 5.
    Damgård, I., Pedersen, T.P., Pfitzmann, B.: Statistical secrecy and multibit commitments. IEEE Trans. Inf. Theory 44(3), 1143–1151 (1998)CrossRefMATHGoogle Scholar
  6. 6.
    Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM J. Comput. 30(2), 391–437 (2000)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. J. ACM 51(6), 851–898 (2004)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Goyal, V., Lin, H., Pandey, O., Pass, R., Sahai, A.: Round-efficient concurrently composable secure computation via a robust extraction lemma. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol. 9014, pp. 260–289. Springer, Heidelberg (2015) Google Scholar
  9. 9.
    Goyal, V., Moriarty, R., Ostrovsky, R., Sahai, A.: Concurrent statistical zero-knowledge arguments for NP from one way functions. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 444–459. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  10. 10.
    Haitner, I., Nguyen, M.-H., Ong, S.J., Reingold, O., Vadhan, S.P.: Statistically hiding commitments and statistical zero-knowledge arguments from any one-way function. SIAM J. Comput. 39(3), 1153–1218 (2009)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Kiyoshima, S.: Round-efficient black-box construction of composable multi-party computation. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 351–368. Springer, Heidelberg (2014) Google Scholar
  13. 13.
    Kiyoshima, S., Manabe, Y., Okamoto, T.: Constant-round black-box construction of composable multi-party computation protocol. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 343–367. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  14. 14.
    Lin, H., Pass, R.: Concurrent non-malleable zero knowledge with adaptive inputs. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 274–292. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  15. 15.
    Lin, H., Pass, R.: Black-box constructions of composable protocols without set-up. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 461–478. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  16. 16.
    Lin, H., Pass, R., Tseng, W.-L.D., Venkitasubramaniam, M.: Concurrent non-malleable zero knowledge proofs. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 429–446. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  17. 17.
    Micciancio, D., Ong, S.J., Sahai, A., Vadhan, S.P.: Concurrent zero knowledge without complexity assumptions. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 1–20. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  18. 18.
    Naor, M.: Bit commitment using pseudorandomness. J. Cryptol. 4(2), 151–158 (1991)CrossRefMATHGoogle Scholar
  19. 19.
    Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic applications. In: STOC, pp. 33–43 (1989)Google Scholar
  20. 20.
    Orlandi, C., Ostrovsky, R., Rao, V., Sahai, A., Visconti, I.: Statistical concurrent non-malleable zero knowledge. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 167–191. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  21. 21.
    Ostrovsky, R., Pandey, O., Visconti, I.: Efficiency preserving transformations for concurrent non-malleable zero knowledge. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 535–552. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  22. 22.
    Pass, R., Rosen, A.: New and improved constructions of non-malleable cryptographic protocols. In: STOC, pp. 533–542 (2005)Google Scholar
  23. 23.
    Pass, R., Tseng, W.-L.D., Venkitasubramaniam, M.: Concurrent zero knowledge, revisited. J. Cryptol. 27(1), 45–46 (2012)CrossRefGoogle Scholar
  24. 24.
    Pass, R., Wee, H.: Black-box constructions of two-party protocols from one-way functions. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 403–418. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  25. 25.
    Prabhakaran, M., Rosen, A., Sahai, A.: Concurrent zero knowledge with logarithmic round-complexity. In: FOCS, pp. 366–375 (2002)Google Scholar
  26. 26.
    Venkitasubramaniam, M.: On adaptively secure protocols. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 455–475. Springer, Heidelberg (2014) Google Scholar

Copyright information

© International Association for Cryptologic Research 2015

Authors and Affiliations

  1. 1.NTT Secure Platform LaboratoriesTokyoJapan

Personalised recommendations